PostGIS Manual

PostGIS Manual

PostGIS is an extension to the PostgreSQL object-relational database system which allows GIS (Geographic Informa-
tion Systems) objects to be stored in the database. PostGIS includes support for GiST-based R-Tree spatial indexes,

and functions for analysis and processing of GIS objects.

Table of Contents

L INtrOAUCHION . .o 1
LA CreditS . oo 1

1.2. More INformation 1

2. INStAllAtioNo 3
2.0 REQUITEMENTS .ttt et 3

2.2, PSS . 3
2.2.0.U0pGrading.o 5

2.2.2. Common Problems.o 6

2.3, ID B 6

2.4, LOAEI/DUMPE. . ..ottt e e ettt e e 7

3. Frequently Asked QUESTIONS.ottt e e 8
4. USING POSIGIS . . . 11
4.1 GIS ObJECES . . oottt 11
4.1.1. OpenGISWKB and WKT 11

4.1.2. PostGIS EWKB, EWKT and Canonical Forms., 12

4.2. Using OpenGIS StandardsS.t 14
4.2.1. The SPATIAL_REF_SYS Table.o 14

4.2.2. The GEOMETRY_COLUMNS Tablet 15

4.2.3. Creatinga Spatial Table. ... 16

4.2.4. Ensuring OpenGIS compliancy of geometries 17
4.3.L0ading GIS Data.ot 18
4.3.0. USING SQL . ot 18

4.3.2. Usingthe Loader 18

44, RetrieVINg GIS Data.ottt 19
44,0, USING SO . oot 19

4.4.2. USING the DUMPEL . . .ot e 21

4.5, BUIldiNg INAEXES.o 22
45,1, GIST INAEXES. . . o ettt e 22

4.5.2. USING INUEXES. . ..ottt e e e 23

4.6. COMPIEX QUEIIES . ..ottt e e e e e e e 24
4.6.1. Taking Advantage of INdeXes. e 24

4.6.2. Examples of Spatial SQL. ...t 24

A.7. USING MAPSEIVEL. . . . oottt e e e e e e e e e e e e 26

A 7.0, BaSIC USAQE. . ..ottt e 27

4.7.2. Frequently Asked QUESHIONSttt e 28

4.7.3. AdVaNCed USAge oottt 29

A7 A EXAMPIES. . 30

4.8.Java Clients (JDBC)ttt e 32

4.9. CClients (lIDpq) - . . oo 34
4.9. 0. TEXECUISOIS. . ..ottt e et e e e e 34

4.9.2. BINArY CUISOIS . .ottt et et e et e e e e e e e e e e 34

B P OIMANCE HIPS. . .ot 35
5.1. Small tables of large geometries 35
5.1.1. Problem descCription 35

5.1.2. WOrKaroUNGS.o .o e e 35

5.2. CLUSTERINg on geometry iNdiCESottt e e 36

5.3. Avoiding dimension CONVEISION.ttt e 36

6. POStGIS RefEIENCE 37
6.1. OpenGIS FUNCLIONS e e e e e e e 37
6.1.1. Management FUNCLIONS.ttt e 37

6.1.2. Geometry Relationship FUNCLIONS. 37

6.1.3. Geometry Processing FUNCHIONSottt e e 40

PostGIS Manual

6.1.4. GEOMELIY ACCESSOIS . . .\ttt t ettt ettt et e et e et et e 42
6.1.5. Geometry CONSIIUCTOIS.ttt e e e e e 45

6.2. POSIQIS EXIENSIONS . . .ottt ettt 49
6.2.1. Management FUNCLIONS.t e 49
B.2.2. OPBIAIOIS. . ..ttt ettt 50
6.2.3. Measurement FUNCHIONSttt 50
6.2.4. Geometry OULPULS.ot e e e 52
6.2.5. Geometry CONSIIUCTOIS.ottt e e e e e e 52
6.2.6. Geometry EdItOrS. 54
B.2.7. MISC . .ottt 55

A REIEASE NOLES. . . oo 58
AL RElEASE L.0.0 . .ot 58
AL UPGradingot e 58
AL.2. Library Changes.o 58
A.1.3. Other changes/additions. e 58

A.2. Release 1.0.0RCH. 58
A2 L UPGrading . ..ot 58
A.2.2. Library Changes.o 58
A.2.3. SCIPES ChaNQES . . .ottt 59
A.2.4. Other Changes i 59

A.3. Release 1.0.0RCS. 59
A3 UPGrading . ..o 59
A.3.2. Library Changes.o i 59
A.3.3. Other Changeso 59

A Release 1.0.0RCA. 59
Ad L. UPGrading . ..ot 59
A4.2. LIbrary Changes.t 59
A3, SCIIPES ChaNQES . . . oot 60
AdA Other Changes e 60

A5, Release 1.0.0RCS. .. . 60
AL UPGrading . ..o 60
A5.2. Library Changes.t 60
A3, SCrHPtS ChaNQeSo 61
AS5.4.IDBC ChangEs.ot 61
AB.5. Other Changeso 61

A.B. Release 1.0.0RC 2.o 61
A L UPGradingo 61
A.6.2. Library Changes. 62
A.B.3. SCIIPLS ChaNQES . . . ot 62
AB.4. Other Changeso 62
A7.Release 1.0.0RC L.o 62
A7. 2. UPGrading . ..ot 62
A7 2. CNaANGES. ..t 62

Chapter 1. Introduction

PostGIS is developed by Refractions Research Inc, as a spatial database technology research project. Refractions
is a GIS and database consulting company in Victoria, British Columbia, Canada, specializing in data integration
and custom software development. We plan on supporting and developing PostGIS to support a range of important
GIS functionality, including full OpenGIS support, advanced topological constructs (coverages, surfaces, networks),
desktop user interface tools for viewing and editing GIS data, and web-based access tools.

1.1. Credits

*0.60

* 0.60 Sandro Santilli <strk@refractions.net>
Coordinates all bug fixing and maintainance effort, inte-
gration of new GEOS functionality, and new function en-
hancements.

* 0.60 Chris Hodgson <chodgson@refractions.net>
Maintains new functions and the 7.2 index bindings.

* 0.60 Paul Ramsey <pramsey@refractions.net>
Maintains the JDBC objects and keeps track of the docu-
mentation and packaging.

* 0.60 Jeff Lounsbury <jeffloun@refractions.net>
Original development of the Shape file loader/dumper.

* 0.60 Dave Blasby <dblasby@gmail.com>
The original developer of PostGIS. Dave wrote the server
side objects, index bindings, and many of the server side
analytical functions.

* 0.60 Other contributors
In alphabetical order: Alex Bodnaru, Bernhard Reiter,
Bruno Wolff Ill, Carl Anderson, David Skea, David
Techer, IIDA Tetsushi, Geographic Data BC, Gerald
Fenoy, Gino Lucrezi, Klaus Foerster, Kris Jurka, Mark
Cave-Ayland, Mark Sondheim, Markus Schaber, Norman
Vine, Olivier Courtin, Ralph Mason, Steffen Macke.

1.2. More Information

The latest software, documentation and news items are available at the PostGIS web site,
http://postgis.refractions.net.

More information about the GEOS geometry operations library is available at http://geos.refractions.net
[http://geos.refractions.net]

url(http://postgis.refractions.net)
url(http://geos.refractions.net)

Introduction

More information about the Proj4 reprojection library is available at http://www.remotesensing.org/proj.

More information about the PostgreSQL database server is available at the PostgreSQL main site
http://www.postgresql.org.

More information about GIST indexing is available at the PostgreSQL GIiST development site,
http://www.sai.msu.su/~megera/postgres/gist.

More information about Mapserver internet map server is available at http://mapserver.gis.umn.edu
[http://Imapserver.gis.umn.edu/]

The "Simple Features for Specification for S(ittp://www.opengis.org/techno/specs/99-049.bifpvailable at
the OpenGIS Consortium web site: http://www.opengis.org.

url(http://www.remotesensing.org/proj)
url(http://www.postgresql.org)
url(http://www.sai.msu.su/~megera/postgres/gist)
url(http://mapserver.gis.umn.edu/)
url(http://www.opengis.org/techno/specs/99-049.pdf)
url(http://www.opengis.org)

Chapter 2. Installation

2.1. Requirements

PostGIS has the following requirements for building and usage:

A complete configured and built PostgreSQL source code tree. PostGIS uses definitions from the PostgreSQL
configure/build process to conform to the particular platform you are building on. PostgreSQL is available from
http://www.postgresqgl.org.

GNU C compiler ¢gcc). Some other ANSI C compilers can be used to compile PostGIS, but we find far fewer
problems when compiling witgcc .

GNU Make @gmake or make). For many systems, GNbhake is the default version of make. Check the version
by invokingmake -v . Other versions ofnake may not process the PostGMakefile properly.

(Recommended) Proj4 reprojection library. The Proj4 library is used to provide coordinate reprojection support
within PostGIS. Proj4 is available for download from http://www.remotesensing.org/proj.

(Recommended) GEOS geometry library. The GEOS library is used to provide geometry tests (Touches(),
Contains(), Intersects()) and operations (Buffer(), GeomUnion(), Difference()) within PostGIS. GEOS is available
for download from http://geos.refractions.net.

2.2. PostGIS

The PostGIS module is a extension to the PostgreSQL backend server. As such, PostGégdir@$a full copy of
the PostgreSQL source tree in order to compile. The PostgreSQL source code is available at http://www.postgresgl.org.

PostGIS 1.0.0 can be built against PostgreSQL versions 7.2.0 to 7.4.x. Earlier versions of Postgre8QtL are
supported.

Before you can compile the PostGIS server modules, you must compile and install the PostgreSQL package.

Note

If you plan to use GEOS functionality you might need to explicitly link PostgreSQL against the standard C++
library:

LDFLAGS=-Istdc++ ./configure [YOUR OPTIONS HERE]

This is a workaround for bogus C++ exceptions interaction with older development tools. If you experience
weird problems (backend unexpectedly closed or similar things) try this trick. This will require recompiling your
PostgreSQL from scratch, of course.

url(http://www.postgresql.org)
url(http://www.remotesensing.org/proj)
url(http://geos.refractions.net)
url(http://www.postgresql.org)

Installation

Retrieve the PostGIS source archive from http://postgis.refractions.net/postgis-1.0.0.tar.gz. Uncompress and

untar the archive in the "contrib" directory of the PostgreSQL source tree.

cd [postgresql source tree]/contrib
gzip -d -c postgis-1.0.0.tar.gz | tar xvf -

3.
Once your PostgreSQL installation is up-to-date, enter the "postgis" directory, and edékbéle.config

file.

If want support for coordinate reprojection you must have the Proj4 library installed, seiSBePROJ
variable tol, and adjust th€ROJ_DIRvariable to point to your Proj4 installation directory.

If want to use GEOS functionality you must have the GEOS library installed, s&t$ie GEOSariable to
1, and adjust th6EOS_DIRvariable to point to your GEOS installation directory.

4.
Run the compile and install commands.
make
make install
All files are installed relative to the PostgreSQL install directfpyefix]
Libraries are installefprefix]/lib/contrib
Important support files such aspostgis.sql are installed iffprefix]/share/contrib
Loader and dumber binaries are installedirefix]/bin
5.
PostGIS requires the PL/pgSQL procedural language extension. Before loadingdisggis.sql file, you
must first enable PL/pgSQL. You should uset¢heatelang command. The PostgreSQL Programmer’s Guide
has the details if you want to this manually for some reason.
createlang plpgsql [yourdatabase]
6

Now load the PostGIS object and function definitions into your database by loadingbstgis.sql
definitions file.

psql -d [yourdatabase] -f lwpostgis.sql

The PostGIS server extensions are now loaded and ready to use.

url(http://postgis.refractions.net/postgis-1.0.0.tar.gz)

Installation

7.
For a complete set of EPSG coordinate system definition identifiers, you can also load the
spatial_ref_sys.sql definitions file and populate tH8#PATIAL_REF_SYStable.

psql -d [yourdatabase] -f spatial_ref sys.sql

2.2.1. Upgrading

Upgrading PostGIS can be tricky, because the underlying C libraries which support the object types and geometries
may have changed between versions.

For this purpose PostGIS provides an utility script to restore a dump produced with the pg_dump -Fc command. It is
experimental so redirecting its output to a file will help in case of problems. The procedure is as follow:

Create a "custom-format" dump of the database you want
to upgrade (let's call it "olddb")
$ pg_dump -Fc olddb olddb.dump

Restore the dump contextually upgrading postgis into

a new database. The new database doesn’'t have to exist.

Let's call it "newdb"

$ sh utils/postgis_restore.pl lwpostgis.sgl newdb olddb.dump > restore.log

Check that all restored dump objects really had to be restored from dump
and do not conflict with the ones defined in Ilwpostgis.sql
$ grep "KEEPING restore.log | less

If upgrading from PostgreSQL < 7.5 to >= 7.5 you might want to

drop the attrelid, varattnum and stats columns in the geometry_columns
table, which are no-more needed. Keeping them won't hurt.

Il DROPPING THEM WHEN REALLY NEEDED WILL DO HURT !!!

$ psql newdb -c "ALTER TABLE geometry_columns DROP attrelid"

$ psql newdb -c "ALTER TABLE geometry_columns DROP varattnum®

$ psql newdb -c "ALTER TABLE geometry_columns DROP stats"

spatial_ref_sys table is restore from the dump, to ensure your custom

additions are kept, but the distributed one might contain modification

so you should backup your entries, drop the table and source the new one.
If you did make additions we assume you know how to backup them before
upgrading the table. Replace of it with the new one is done like this:

$ psql newdb

newdb=> drop table spatial_ref sys;

DROP

newdb=> \i spatial_ref_sys.sql

Following is the "old" procedure description. IT SHOULD BE AVOIDED if possible, as it will leave in the database
many spurious functions. It is kept in this document as a "backup" in case postgis_restore.pl won't work for you:

Installation

pg_dump -t "*" -f dumpfile.sgl yourdatabase
dropdb yourdatabase

createdb yourdatabase

createlang plpgsql yourdatabase

psql -f lwpostgis.sql -d yourdatabase

psql -f dumpfile.sqgl -d yourdatabase
vacuumdb -z yourdatabase

2.2.2. Common Problems

There are several things to check when your installation or upgrade doesn’t go as you expected.

1.
It is easiest if you untar the PostGIS distribution into the contrib directory under the PostgreSQL source tree.
However, if this is not possible for some reason, you can seP@G8QL_SRE@&nvironment variable to the path
to the PostgreSQL source directory. This will allow you to compile PostGIS, buh#ie install may not work,
so be prepared to copy the PostGIS library and executable files to the appropriate locations yourself.

Check that you you have installed PostgreSQL 7.2 or newer, and that you are compiling against the same version
of the PostgreSQL source as the version of PostgreSQL that is running. Mix-ups can occur when your (Linux)
distrubution has already installed PostgreSQL, or you have otherwise installed PostgreSQL before and forgotten
about it. PostGIS will only work with PostgreSQL 7.2 or newer, and strange, unexpected error messages will
result if you use an older version. To check the version of PostgreSQL which is running, connect to the database
using psql and run this query:

SELECT version();

If you are running an RPM based distribution, you can check for the existence of pre-installed packages using the
rpm command as follows:pm -qa | grep postgresql

Also check that you have made any necessary changes to the top of the Makefile.config. This includes:
1

If you want to be able to do coordinate reprojections, you must install the Proj4 library on your system, set the
USE_PROJariable to 1 and thfROJ_DIRto your installation prefix in the Makefile.config.

2.
If you want to be able to use GEOS functions you must install the GEOS library on your system, and set the
USE_GEO$%o 1 and theGEOS_DIRto your installation prefix in the Makefile.config

2.3.JDBC

The JDBC extensions provide Java objects corresponding to the internal PostGIS types. These objects can be used to
write Java clients which query the PostGIS database and draw or do calculations on the GIS data in PostGIS.

Installation

1.
Enter thggdbc sub-directory of the PostGIS distribution.

2.
Edit theMakefile to provide the correct paths of your java compil@AYAQ and interpreterJAVA).

3.
Run themake command. Copy thpostgis.jar file to wherever you keep your java libraries.

2.4. Loader/Dumper

The data loader and dumper are built and installed automatically as part of the PostGIS build. To build and install
them manually:

cd postgis-1.0.0/loader

make

make install

The loader is calledhp2pgsql and converts ESRI Shape files into SQL suitable for loading in PostGIS/PostgreSQL.
The dumper is calledgsql2shp and converts PostGIS tables (or queries) into ESRI Shape files.

Chapter 3. Frequently Asked Questions

3.1.What kind of geometric objects can | store?

You can store point, line, polygon, multipoint, multiline, multipolygon, and geometrycollections. These are
specified in the Open GIS Well Known Text Format (with XYZ,XYM,XYZM extentions).

3.2.How do | insert a GIS object into the database?

First, you need to create a table with a column of type "geometry" to hold your GIS data. Connect to your
database witlpsql and try the following SQL.:

CREATE TABLE gtest (ID int4, NAME varchar(20));
SELECT AddGeometryColumn(”, 'gtest’,’”geom’,-1,'LINESTRING’,2);

If the geometry column addition fails, you probably have not loaded the PostGIS functions and objects into this
database. See tlmstallation instructions

Then, you can insert a geometry into the table using a SQL insert statement. The GIS object itself is formatted
using the OpenGIS Consortium "well-known text" format:

INSERT INTO gtest (ID, NAME, GEOM) VALUES (1, 'First Geometry’, GeomFromText(LINESTRING(2
3,4 5,6 5,7 8), -1));

For more information about other GIS objects, seedject reference
To view your GIS data in the table:

SELECT id, name, AsText(geom) AS geom FROM gtest;

The return value should look something like this:

id | name | geom

———1 4
T T

1 | First Geometry | LINESTRING(2 3,4 5,6 5,7 8)
(1 row)

3.3.How do | construct a spatial query?

Frequently Asked
Questions

The same way you construct any other database query, as an SQL combination of return values, functions, and
boolean tests.

For spatial queries, there are two issues that are important to keep in mind while constructing your query: is
there a spatial index you can make use of; and, are you doing expensive calculations on a large number of
geometries.

In general, you will want to use the "intersects operator" (&&) which tests whether the bounding boxes of
features intersect. The reason the && operator is useful is because if a spatial index is available to speed up the
test, the && operator will make use of this. This can make queries much much faster.

You will also make use of spatial functions, such as Distance(), Intersects(), Contains() and Within(), among
others, to narrow down the results of your search. Most spatial queries include both an indexed test and a
spatial function test. The index test serves to limit the number of return tuples to only tuplegghéineet the
condition of interest. The spatial functions are then use to test the condition exactly.

SELECT id, the_geom FROM thetable
WHERE
the_geom && 'POLYGON((0 0, 0 10, 10 10, 10 0, 0 Q)Y
AND
Contains(the_geom,’POLYGON((0 0, 0 10, 10 10, 10 0, 0 0));

3.4.How do | speed up spatial queries on large tables?

Fast queries on large tables is tlagson d’etreof spatial databases (along with transaction support) so having a
good index is important.

To build a spatial index on a table withggometry column, use the "CREATE INDEX" function as follows:

CREATE INDEX [indexname] ON [tablename]
USING GIST ([geometrycolumn]);

The "USING GIST" option tells the server to use a GiST (Generalized Search Tree) index.

Note

GIST indexes are assumed to be lossy. Lossy indexes uses a proxy object (in the spatial case, a bounding box)
for building the index.

You should also ensure that the PostgreSQL query planner has enough information about your index to make
rational decisions about when to use it. To do this, you have to "gather statistics" on your geometry tables.

For PostgreSQL 8.0.x and greater, just run¥A€UUM ANALYZE command.
For PostgreSQL 7.4.x and below, run BELECT UPDATE_GEOMETRY_STATS() command.
3.5.Why aren’t PostgreSQL R-Tree indexes supported?

Early versions of PostGIS used the PostgreSQL R-Tree indexes. However, PostgreSQL R-Trees have been
completely discarded since version 0.6, and spatial indexing is provided with an R-Tree-over-GiST scheme.

Our tests have shown search speed for native R-Tree and GiST to be comparable. Native PostgreSQL R-Trees
have two limitations which make them undesirable for use with GIS features (note that these limitations are due
to the current PostgreSQL native R-Tree implementation, not the R-Tree concept in general):

Frequently Asked
Questions

R-Tree indexes in PostgreSQL cannot handle features which are larger than 8K in size. GiST indexes can,
using the "lossy" trick of substituting the bounding box for the feature itself.

R-Tree indexes in PostgreSQL are not "null safe", so building an index on a geometry column which contains
null geometries will fail.

3.6.Why should | use thédddGeometryColumn() function and all the other OpenGIS stuff?

If you do not want to use the OpenGIS support functions, you do not have to. Simply create tables as in older
versions, defining your geometry columns in the CREATE statement. All your geometries will have SRIDs of
-1, and the OpenGIS meta-data tables wit be filled in properly. However, this will cause most applications
based on PostGIS to fail, and it is generally suggested that you dadd®eometryColumn() to create
geometry tables.

Mapserver is one application which makes use of g@mmetry columns meta-data. Specifically,
Mapserver can use the SRID of the geometry column to do on-the-fly reprojection of features into the correct
map projection.

3.7.What is the best way to find all objects within a radius of another object?

To use the database most efficiently, it is best to do radius queries which combine the radius test with a bounding
box test: the bounding box test uses the spatial index, giving fast access to a subset of data which the radius test
is then applied to.

TheExpand() function is a handy way of enlarging a bounding box to allow an index search of a region of
interest. The combination of a fast access index clause and a slower accurate distance test provides the best
combination of speed and precision for this query.

For example, to find all objects with 100 meters of POINT(1000 1000) the following query would work well:

SELECT *
FROM GEOTABLE
WHERE

GEOCOLUMN && Expand(GeomFromText(POINT(1000 1000)’,-1),100)
AND

Distance(GeomFromText('POINT(1000 1000)’,-1), GEOCOLUMN) < 100;
3.8.How do | perform a coordinate reprojection as part of a query?

To perform a reprojection, both the source and destination coordinate systems must be defined in the SPA-
TIAL_REF_SYS table, and the geometries being reprojected must already have an SRID set on them. Once that
is done, a reprojection is as simple as referring to the desired destination SRID.

SELECT Transform(GEOM,4269) FROM GEOTABLE;

10

Chapter 4. Using PostGIS
4.1. GIS Objects

The GIS objects supported by PostGIS are a superset of the "Simple Features" defined by the OpenGIS Consortium
(OGCQC). As of version 0.9, PostGIS supports all the objects and functions specified in the OGC "Simple Features for
SQL" specification.

PostGIS extends the standard with support for 3DZ,3DM and 4D coordinates.

4.1.1. OpenGIS WKB and WKT

The OpenGIS specification defines two standard ways of expressing spatial objects: the Well-Known Text (WKT)
form and the Well-Known Binary (WKB) form. Both WKT and WKB include information about the type of the
object and the coordinates which form the object.

Examples of the text representations (WKT) of the spatial objects of the features are as follows:

POINT(0 0)

LINESTRING(00,1 1,1 2)

POLYGON((0 0,4 0,44,04,00),(11,21,22,12,11))

MULTIPOINT(0 0,1 2)

MULTILINESTRING((0 0,1 1,1 2),(2 3,3 2,5 4))

MULTIPOLYGON(((0 0,4 0,4 4,0 4,00),(11,21,22,1 2,1 1)), (-1 -1,-1 -2,-2 -2,-2 -1,-1 -1)))

GEOMETRYCOLLECTION(POINT(2 3),LINESTRING((2 3,3 4)))

11

Using PostGIS

The OpenGIS specification also requires that the internal storage format of spatial objects include a spatial referencing
system identifier (SRID). The SRID is required when creating spatial objects for insertion into the database.

Input/Output of these formats are available using the following interfaces:

bytea WKB = asBinary(geometry);

text WKT = asText(geometry);

geometry = GeomFromWKB(bytea WKB, SRID);
geometry = GeometryFromText(text WKT, SRID);

For example, a valid insert statement to create and insert an OGC spatial object would be:

INSERT INTO SPATIALTABLE (
THE_GEOM,
THE_NAME

)
VALUES (

GeomFromText(POINT(-126.4 45.32)’, 312),
‘A Place’

)

4.1.2. PostGIS EWKB, EWKT and Canonical Forms

OGC formats only support 2d geometries, and the associated SRID is *never* embedded in the input/output
representations.

Postgis extended formats are currently superset of OGC one (every valid WKB/WKT is a valid EWKB/EWKT) but
this might vary in the future, specifically if OGC comes out with a new format conflicting with our extensions. Thus
you SHOULD NOT rely on this feature!

Postgis EWKB/EWKT add 3dm,3dz,4d coordinates support and embedded SRID information.

Examples of the text representations (EWKT) of the extended spatial objects of the features are as follows:

POINT(0 0 0) -- XYZ

SRID=32632;POINT(0 0) -- XY with SRID

POINTM(0 0 0) -- XYM

POINT(0000) -- XYZM

SRID=4326;MULTIPOINTM(0 0 0,1 2 1) -- XYM with SRID

12

Using PostGIS

MULTILINESTRING((000,110,121),(231,321,54 1))

POLYGON((000,400,440,040,000),(110,210,220,120,110))

MULTIPOLYGON(((0 00,4 00,44 0,04 0,000),(110,210,220,120,110)),((-1-10,-1-20,-2-20,-2-10,-1
-10)))

GEOMETRYCOLLECTIONM(POINTM(2 3 9),LINESTRINGM((2 3 4,3 4 5)))

Input/Output of these formats are available using the following interfaces:

bytea EWKB = asEWKB(geometry);

text EWKT = asEWKT(geometry);

geometry = GeomFromEWKB (bytea EWKB);
geometry = GeomFromEWKT (text EWKT);

For example, a valid insert statement to create and insert a PostGIS spatial object would be:

INSERT INTO SPATIALTABLE (
THE_GEOM,
THE_NAME
)
VALUES (
GeomFromEWKT('SRID=312;POINTM(-126.4 45.32 15)),
‘A Place’

)

The "canonical forms" of a PostgreSQL type are the representations you get with a simple query (without any function
call) and the one which is guaranteed to be accepted with a simple insert, update or copy. For the postgis 'geometry
type these are:

- Output -
binary: EWKB
ascii: HEXEWKB (EWKB in hex form)

- Input -

binary: EWKB
ascii: HEXEWKB|EWKT

For example this statement reads EWKT and returns HEXEWKB in the process of canonical ascii input/output:

13

Using PostGIS

=# SELECT 'SRID=4;POINT(0 0)::geometry;
geometry

01010000200400000000000000000000000000000000000000
(1 row)

4.2. Using OpenGIS Standards

The OpenGIS "Simple Features Specification for SQL" defines standard GIS object types, the functions required to
manipulate them, and a set of meta-data tables. In order to ensure that meta-data remain consistent, operations such as
creating and removing a spatial column are carried out through special procedures defined by OpenGIS.

There are two OpenGIS meta-data tables:SPATIAL_REF_SYS and GEOMETRY_COLUMNShe
SPATIAL_REF_SYS table holds the numeric IDs and textual descriptions of coordinate systems used in the
spatial database.

4.2.1. The SPATIAL_REF_SYS Table

The SPATIAL_REF_SYStable definition is as follows:
CREATE TABLE SPATIAL_REF_SYS (
SRID INTEGER NOT NULL PRIMARY KEY,
AUTH_NAME VARCHAR(256),
AUTH_SRID INTEGER,
SRTEXT VARCHAR(2048),
PROJATEXT VARCHAR(2048)

The SPATIAL_REF_SYScolumns are as follows:
*0.60

*0.60 SRID
An integer value that uniquely identifies the Spatial Referencing System (SRS) within the
database.

*0.60 AUTH_NAME
The name of the standard or standards body that is being cited for this reference system. For
example, "EPSG" would be a val&lUTH_NAME

*0.60 AUTH_SRID
The ID of the Spatial Reference System as defined by the Authority cited lUfiél_NAME
In the case of EPSG, this is where the EPSG projection code would go.

14

Using PostGIS

*0.60 SRTEXT

*0.60 PROJATEXT

The Well-Known Text representation of the Spatial Reference System. An example of a WKT
SRS representation is:

PROJCS["'NADS83 / UTM Zone 10N",
GEOGCS['NAD83",
DATUM["North_American_Datum_1983",
SPHEROID["GRS 1980",6378137,298.257222101]
1,
PRIMEM["Greenwich",0],
UNIT["degree",0.0174532925199433]
I,
PROJECTION]["Transverse_Mercator"],
PARAMETER]["latitude_of_origin",0],
PARAMETER["central_meridian”,-123],
PARAMETER(["scale_factor",0.9996],
PARAMETER["false_easting",500000],
PARAMETER(["false_northing",0],
UNIT["metre",1]

]

For a listing of EPSG projection codes and their corresponding WKT representations, see
http://www.opengis.org/techno/interop/EPSG2WKT.TXT. For a discussion of WKT in gen-
eral, see the OpenGIS "Coordinate Transformation Services Implementation Specification" at
http://www.opengis.org/techno/specs.htm. For information on the European Petroleum Survey
Group (EPSG) and their database of spatial reference systems, see http://epsg.org.

PostGIS uses the Proj4 library to provide coordinate transformation capabilities. The
PROJATEXTcolumn contains the Proj4 coordinate definition string for a particular SRID. For
example:

+proj=utm +zone=10 +ellps=clrk66 +datum=NAD27 +units=m

For more information about, see the Proj4 web site at http://www.remotesensing.org/proj. The
spatial_ref_sys.sql file contains botlSRTEXTand PROJ4ATEXTdefinitions for all
EPSG projections.

4.2.2. The GEOMETRY_COLUMNS Table

The GEOMETRY_COLUMtd8le definition is as follows:
CREATE TABLE GEOMETRY_COLUMNS (

F_TABLE_CATALOG VARCHAR(256) NOT NULL,

F_TABLE_SCHE

MA VARCHAR(256) NOT NULL,

F_TABLE_NAME VARCHAR(256) NOT NULL,
F_GEOMETRY_COLUMN VARCHAR(256) NOT NULL,
COORD_DIMENSION INTEGER NOT NULL,

SRID INTEGER

NOT NULL,

TYPE VARCHAR(30) NOT NULL

The columns are as follows:

*0.60

15

url(http://www.opengis.org/techno/interop/EPSG2WKT.TXT)
url(http://www.opengis.org/techno/specs.htm)
url(http://epsg.org)
url(http://www.remotesensing.org/proj)

Using PostGIS

*0.60 F_TABLE_CATALOG, F_TABLE_SCHEMA, F_TABLE_NAME

*0.60 F_GEOMETRY_COLUMN

*0.60 COORD_DIMENSION

*0.60SRID

*0.60 TYPE

4.2.3. Creating a Spatial Table

The fully qualified name of the feature table containing
the geometry column. Note that the terms "catalog" and
"schema" are Oracle-ish. There is not PostgreSQL ana-
logue of "catalog” so that column is left blank -- for
"schema" the PostgreSQL schema name is ysaiolic

is the default).

The name of the geometry column in the feature table.

The spatial dimension (2, 3 or 4 dimensional) of the
column.

The ID of the spatial reference system used for the coor-
dinate geometry in this table. It is a foreign key reference
to theSPATIAL_REF_SYS

The type of the spatial object. To restrict the spa-
tial column to a single type, use one of: POINT,
LINESTRING, POLYGON, MULTIPOINT, MULTI-
LINESTRING, MULTIPOLYGON, GEOMETRYCOL-
LECTION or corresponding XYM versions POINTM,
LINESTRINGM, POLYGONM, MULTIPOINTM,
MULTILINESTRINGM, MULTIPOLYGONM, GEOM-
ETRYCOLLECTIONM. For heterogeneous (mixed-type)
collections, you can use "GEOMETRY" as the type.

Note

This attribute is (probably) not part of the OpenGIS spec-
ification, but is required for ensuring type homogeneity.

Creating a table with spatial data is done in two stages:

Create a normal non-spatial table.

For example CREATE TABLE ROADS_GEOM (ID int4, NAME varchar(25))

16

Using PostGIS

Add a spatial column to the table using the OpenGIS "AddGeometryColumn" function.
The syntax is:

AddGeometryColumn(<schema_name>, <table_name>,
<column_name>, <srid>, <type>,
<dimension>)

Or, using current schema:

AddGeometryColumn(<table_name>,
<column_name>, <srid>, <type>,
<dimension>)

Examplel:SELECT AddGeometryColumn(’public’, 'roads_geom’, ‘'geom’, 423, 'LINESTRING’, 2)
Example2:SELECT AddGeometryColumn('roads_geom’, ‘geom’, 423, 'LINESTRING’, 2)

Here is an example of SQL used to create a table and add a spatial column (assuming that an SRID of 128 exists
already):

CREATE TABLE parks (PARK_ID int4, PARK_NAME varchar(128), PARK_DATE date,
PARK_TYPE varchar(2));

SELECT AddGeometryColumn(’parks’, 'park_geom’, 128, 'MULTIPOLYGON’, 2);

>

Here is another example, using the generic "geometry” type and the undefined SRID value of -1:
CREATE TABLE roads (ROAD_ID int4, ROAD_NAME varchar(128));
SELECT AddGeometryColumn(’'roads’, 'roads_geom’, -1, 'GEOMETRY’, 3);

4.2.4. Ensuring OpenGIS compliancy of geometries

Most of the functions implemented by the GEOS library rely on the assumption that your geometries are valid as
specified by the OpenGIS Simple Feature Specification. To check validity of geometries you can IsS@liti@

function:
gisdb=# select isvalid(LINESTRING(0 0, 1 1)), isvalid(LINESTRING(0 0,0 0)’);

isvalid | isvalid
_________ Ao
t | f

By default, PostGIS does not apply this validity check on geometry input, because testing for validity needs lots of
CPU time for complex geometries, especially polygons. If you do not trust your data sources, you can manually
enforce such a check to your tables by adding a check constraint:

ALTER TABLE mytable ADD CONSTRAINT geometry_valid_check CHECK
(isvalid(the_geom));

«—

If you encounter any strange error messages such as "GEOS Intersection() threw an error!" or "JTS Intersection() threw
an error!" when calling PostGIS functions with valid input geometries, you likely found an error in either PostGIS or
one of the libraries it uses, and you should contact the PostGIS developers. The same is true if a PostGIS function
returns an invalid geometry for valid input.

17

Using PostGIS

Note

Strictly compliant OGC geometries cannot have Z or M values. [EMalid() function won't consider
higher dimensioned geometries invalid! Invocation&dfiGeometryColumn(ill add a constraint checking
geometry dimensions, so it is enough to specify 2 there.

4.3. Loading GIS Data

Once you have created a spatial table, you are ready to upload GIS data to the database. Currently, there are two ways to
get data into a PostGIS/PostgreSQL database: using formatted SQL statements or using the Shape file loader/dumper.

4.3.1. Using SQL

If you can convert your data to a text representation, then using formatted SQL might be the easiest way to get your
data into PostGIS. As with Oracle and other SQL databases, data can be bulk loaded by piping a large text file full of
SQL "INSERT" statements into the SQL terminal monitor.

A data upload filerpads.sql for example) might look like this:

BEGIN;

INSERT INTO ROADS_GEOM (ID,GEOM,NAME) VALUES
(1,GeomFromText(LINESTRING(191232 243118,191108 243242)’,-1),'Jeff Rd’);
INSERT INTO ROADS_GEOM (ID,GEOM,NAME) VALUES
(2,GeomFromText(LINESTRING(189141 244158,189265 244817)',-1),'Geordie Rd’);
INSERT INTO ROADS_GEOM (ID,GEOM,NAME) VALUES
(3,GeomFromText(LINESTRING(192783 228138,192612 229814)’,-1),'Paul St’);
INSERT INTO ROADS_GEOM (ID,GEOM,NAME) VALUES
(4,GeomFromText(LINESTRING(189412 252431,189631 259122)’,-1),'Graeme Ave’);
INSERT INTO ROADS_GEOM (ID,GEOM,NAME) VALUES
(5,GeomFromText(LINESTRING(190131 224148,190871 228134),-1),’Phil Tce");
INSERT INTO ROADS_GEOM (ID,GEOM,NAME) VALUES
(6,GeomFromText(LINESTRING(198231 263418,198213 268322)’,-1),'Dave Cres’);
COMMIT;

The data file can be piped into PostgreSQL very easily using the "psql" SQL terminal monitor:
psql -d [database] -f roads.sql

4.3.2. Using the Loader

Theshp2pgsgl data loader converts ESRI Shape files into SQL suitable for insertion into a PostGIS/PostgreSQL
database. The loader has several operating modes distinguished by command line flags:
*0.60

*0.60-d
Drops the database table before creating a new table with the data in the Shape file.

*0.60-a
Appends data from the Shape file into the database table. Note that to use this option to load
multiple files, the files must have the same attributes and same data types.

18

Using PostGIS

*0.60-c
Creates a new table and populates it from the ShapeTtilis.is the default mode.

*0.60-p
Only produces the table creation SQL code, without adding any actual data. This can be used if
you need to completely separate the table creation and data loading steps.

*0.60-D

Use the PostgreSQL "dump" format for the output data. This can be combined with -a, -c and
-d. Itis much faster to load than the default "insert" SQL format. Use this for very large data
sets.

*0.60-s <SRID>
Creates and populates the geometry tables with the specified SRID.

*0.60-k
Keep idendifiers case (column, schema and attributes). Note that attributes in Shapefile are all
UPPERCASE.

*0.60 -i
Coerce all integers to standard 32-bit integers, do not create 64-bit bigints, even if the DBF
header signature appears to warrant it.

*0.60 -w

Output WKT format, for use with older (0.x) versions of PostGIS. Note that this will introduce
coordinate drifts and will drop M values from shapefiles.

Note that -a, -c, -d and -p are mutually exclusive.

An example session using the loader to create an input file and uploading it might look like this:
shp2pgsqgl shaperoads myschema.roadstable > roads.sql
psql -d roadsdb -f roads.sql

A conversion and upload can be done all in one step using UNIX pipes:
shp2pgsql shaperoads myschema.roadstable | psqgl -d roadsdb

4.4, Retrieving GIS Data

Data can be extracted from the database using either SQL or the Shape file loader/dumper. In the section on SQL we
will discuss some of the operators available to do comparisons and queries on spatial tables.

4.4.1. Using SQL

The most straightforward means of pulling data out of the database is to use a SQL select query and dump the resulting
columns into a parsable text file:

19

Using PostGIS

db=# SELECT id, AsText(geom) AS geom, hame FROM ROADS_GEOM,;
id | geom | name

-+ +

1 | LINESTRING(191232 243118,191108 243242) | Jeff Rd

2 | LINESTRING(189141 244158,189265 244817) | Geordie Rd
3 | LINESTRING(192783 228138,192612 229814) | Paul St

4 | LINESTRING(189412 252431,189631 259122) | Graeme Ave
5 | LINESTRING(190131 224148,190871 228134) | Phil Tce

6 | LINESTRING(198231 263418,198213 268322) | Dave Cres
7 | LINESTRING(218421 284121,224123 241231) | Chris Way
(6 rows)

However, there will be times when some kind of restriction is necessary to cut down the number of fields returned. In
the case of attribute-based restrictions, just use the same SQL syntax as normal with a non-spatial table. In the case of
spatial restrictions, the following operators are available/useful:

*0.60

*0.60 &&
This operator tells whether the bounding box of one geometry intersects the bounding box of another.

*0.60~=
This operators tests whether two geometries are geometrically identical. For example, if ' POLYGON((0 0,1 1,1
0,0 0))' is the same as 'POLYGON((0 0,1 1,1 0,0 0))’ (it is).

*0.60=
This operator is a little more naive, it only tests whether the bounding boxes of to geometries are the same.

Next, you can use these operators in queries. Note that when specifying geometries and boxes on the SQL command
line, you must explicitly turn the string representations into geometries by using the "GeomFromText()" function. So,
for example:
SELECT

ID, NAME
FROM ROADS_GEOM
WHERE

GEOM ~= GeomFromText(LINESTRING(191232 243118,191108 243242)’,-1);

The above query would return the single record from the "/ROADS_GEOM" table in which the geometry was equal to
that value.

When using the "&&" operator, you can specify either a BOX3D as the comparison feature or a GEOMETRY. When
you specify a GEOMETRY, however, its bounding box will be used for the comparison.
SELECT

ID, NAME
FROM ROADS GEOM
WHERE

GEOM && GeomFromText(POLYGON((191232 243117,191232 243119,191234
243117,191232 243117))’,-1);

>

The above query will use the bounding box of the polygon for comparison purposes.

20

Using PostGIS

The most common spatial query will probably be a "frame-based" query, used by client software, like data browsers
and web mappers, to grab a "map frame" worth of data for display. Using a "BOX3D" object for the frame, such a
query looks like this:
SELECT

AsText(GEOM) AS GEOM
FROM ROADS_GEOM
WHERE

GEOM && GeomFromText('BOX3D (191232 243117,191232 243119)::box3d,-1);

Note the use of the SRID, to specify the projection of the BOX3D. The value -1 is used to indicate no specified SRID.

4.4.2. Using the Dumper

The pgsqgl2shp table dumper connects directly to the database and converts a table (possibly defined by a query)
into a shape file. The basic syntax is:
pgsql2shp [<options>] <database> [<schema>.]<table>

pgsql2shp [<options>] <database> <query>

The commandline options are:
*0.60

*0.60 -f <filename>
Write the output to a particular filename.

* 0.60-h <host>
The database host to connect to.

*0.60-p <port>
The port to connect to on the database host.

*0.60 -P <password>
The password to use when connecting to the database.

*0.60-u <user>
The username to use when connecting to the database.

*0.60 -g <geometry column>
In the case of tables with multiple geometry columns, the geometry
column to use when writing the shape file.

*0.60-b
Use a binary cursor. This will make the operation faster, but will not
work if any NON-geometry attribute in the table lacks a cast to text.

*0.60-r
Raw mode. Do not drop thgid field, or escape column names.

21

Using PostGIS

*0.60-d
For backward compatibility: write a 3-dimensional shape file when
dumping from old (pre-1.0.0) postgis databases (the default is to
write a 2-dimensional shape file in that case). Starting from postgis-
1.0.0+, dimensions are fully encoded.

4.5. Building Indexes

Indexes are what make using a spatial database for large data sets possible. Without indexing, any search for a feature
would require a "sequential scan" of every record in the database. Indexing speeds up searching by organizing the
data into a search tree which can be quickly traversed to find a particular record. PostgreSQL supports three kinds of
indexes by default: B-Tree indexes, R-Tree indexes, and GiST indexes.

B-Trees are used for data which can be sorted along one axis; for example, numbers, letters, dates. GIS data cannot
be rationally sorted along one axis (which is greater, (0,0) or (0,1) or (1,0)?) so B-Tree indexing is of no use for
us.

R-Trees break up data into rectangles, and sub-rectangles, and sub-sub rectangles, etc. R-Trees are used by some
spatial databases to index GIS data, but the PostgreSQL R-Tree implementation is not as robust as the GiST
implementation.

GIiST (Generalized Search Trees) indexes break up data into "things to one side", "things which overlap", "things
which are inside" and can be used on a wide range of data-types, including GIS data. PostGIS uses an R-Tree

index implemented on top of GiST to index GIS data.

4.5.1. GiST Indexes

GIiST stands for "Generalized Search Tree" and is a generic form of indexing. In addition to GIS indexing, GiST is
used to speed up searches on all kinds of irregular data structures (integer arrays, spectral data, etc) which are not
amenable to normal B-Tree indexing.

Once a GIS data table exceeds a few thousand rows, you will want to build an index to speed up spatial searches of the
data (unless all your searches are based on attributes, in which case you’'ll want to build a normal index on the attribute
fields).

The syntax for building a GiST index on a "geometry" column is as follows:

CREATE INDEX [indexname] ON [tablename]
USING GIST ([geometryfield] GIST_GEOMETRY_OPS);

Building a spatial index is a computationally intensive exercise: on tables of around 1 million rows, on a 300MHz
Solaris machine, we have found building a GiST index takes about 1 hour. After building an index, it is important to
force PostgreSQL to collect table statistics, which are used to optimize query plans:

22

Using PostGIS

VACUUM ANALYZE [table_name] [column_name];

-- This is only needed for PostgreSQL 7.4 installations and below
SELECT UPDATE_GEOMETRY_STATS([table_name], [column_name]);

GIiST indexes have two advantages over R-Tree indexes in PostgreSQL. Firstly, GiST indexes are "null safe", meaning
they can index columns which include null values. Secondly, GiST indexes support the concept of "lossiness" which
is important when dealing with GIS objects larger than the PostgreSQL 8K page size. Lossiness allows PostgreSQL
to store only the "important" part of an object in an index -- in the case of GIS objects, just the bounding box. GIS
objects larger than 8K will cause R-Tree indexes to fail in the process of being built.

4.5.2. Using Indexes

Ordinarily, indexes invisibly speed up data access: once the index is built, the query planner transparently decides

when to use index information to speed up a query plan. Unfortunately, the PostgreSQL query planner does not

optimize the use of GiST indexes well, so sometimes searches which should use a spatial index instead default to a
sequence scan of the whole table.

If you find your spatial indexes are not being used (or your attribute indexes, for that matter) there are a couple things
you can do:

Firstly, make sure statistics are gathered about the number and distributions of values in a table, to provide the
guery planner with better information to make decisions around index usage. For PostgreSQL 7.4 installations and
below this is done by runningpdate_geometry_stats([table_name, column_nameggompute distribution) and
VACUUM ANALYZE [table_name] [column_name] (compute number of values). Starting with PostgreSQL

8.0 runningVACUUM ANALYZE will do both operations. You should regularly vacuum your databases anyways

-- many PostgreSQL DBAs ha¥ACUUM run as an off-peak cron job on a regular basis.

If vacuuming does not work, you can force the planner to use the index information by usigETh&N-
ABLE_SEQSCAN=OFF command. You should only use this command sparingly, and only on spatially indexed
gueries: generally speaking, the planner knows better than you do about when to use normal B-Tree indexes. Once
you have run your query, you should consider setBNABLE_SEQSCAHNack on, so that other queries will

utilize the planner as normal.

Note
As of version 0.6, it should not be necessary to force the planner to use the inde&NABLE_SEQSCAN

If you find the planner wrong about the cost of sequencial vs index scans try reducing the value of ran-
dom_page_cost in postgresgl.conf or using SET random_page_cost=#. Default value for the parameter is 4, try
setting it to 1 or 2. Decrementing the value makes the planner more inclined of using Index scans.

23

Using PostGIS

4.6. Complex Queries

Theraison d’etreof spatial database functionality is performing queries inside the database which would ordinarily
require desktop GIS functionality. Using PostGIS effectively requires knowing what spatial functions are available,
and ensuring that appropriate indexes are in place to provide good performance.

4.6.1. Taking Advantage of Indexes

When constructing a query it is important to remember that only the bounding-box-based operators such as && can
take advatage of the GiST spatial index. Functions suctlistance() cannot use the index to optimize their
operation. For example, the following query would be quite slow on a large table:

SELECT the_geom FROM geom_table

WHERE distance(the_geom, GeomFromText('POINT(100000 200000)’, -1)) < 100

This query is selecting all the geometries in geom_table which are within 100 units of the point (100000, 200000).
It will be slow because it is calculating the distance between each point in the table and our specified point, ie. one
distance() calculation for each row in the table. We can avoid this by using the && operator to reduce the number
of distance calculations required:
SELECT the_geom FROM geom_table
WHERE the_geom && 'BOX3D(90900 190900, 100100 200100)::box3d

AND distance(the_geom, GeomFromText('POINT(100000 200000)’, -1)) < 100

This query selects the same geometries, but it does it in a more efficient way. Assuming there is a GiST index on
the_geom, the query planner will recognize that it can use the index to reduce the number of rows before calculating
the result of thedistance() function. Notice that thd80X3Dgeometry which is used in the && operation is

a 200 unit square box centered on the original point - this is our "query box". The && operator uses the index to
quickly reduce the result set down to only those geometries which have bounding boxes that overlap the "query box".
Assuming that our query box is much smaller than the extents of the entire geometry table, this will drastically reduce
the number of distance calculations that need to be done.

4.6.2. Examples of Spatial SQL

The examples in this section will make use of two tables, a table of linear roads, and a table of polygonal municipality
boundaries. The table definitions for the roads table is:

Column | Type | Description
+ +
gid | integer | Unique 1D
name | character varying | Road Name
the_geom | geometry | Location Geometry (Linestring)
The table definition for thbc_municipality table is:
Column | Type | Description
+ +
gid | integer | Unique ID
code | integer | Unique ID
name | character varying | City / Town Name
the_geom | geometry | Location Geometry (Polygon)

24

Using PostGIS

4.6.2.4.6.2.1.1What is the total length of all roads, expressed in kilometers?
You can answer this question with a very simple piece of SQL:

postgis=# SELECT sum(length(the_geom))/1000 AS km_roads FROM bc_roads;
km_roads

70842.1243039643
(1 row)

4.6.2.4.6.2.1.2How large is the city of Prince George, in hectares?
This query combines an attribute condition (on the municipality name) with a spatial calculation (of the area):

postgis=# SELECT area(the_geom)/10000 AS hectares FROM bc_municipality
WHERE name = 'PRINCE GEORGE;
hectares

32657.9103824927
(1 row)

4.6.2.4.6.2.1.3What is the largest municipality in the province, by area?

This query brings a spatial measurement into the query condition. There are several ways of approaching this
problem, but the most efficient is below:

postgis=# SELECT name, area(the_geom)/10000 AS hectares
FROM bc_municipality
ORDER BY hectares DESC

LIMIT 1;
name | hectares
+
TUMBLER RIDGE | 155020.02556131

(1 row)

Note that in order to answer this query we have to calculate the area of every polygon. If we were doing this a
lot it would make sense to add an area column to the table that we could separately index for performance. By
ordering the results in a descending direction, and them using the PostgreSQL "LIMIT" command we can easily
pick off the largest value without using an aggregate function like max().

4.6.2.4.6.2.1.AVhat is the length of roads fully contained within each municipality?

This is an example of a "spatial join", because we are bringing together data from two tables (doing a join) but
using a spatial interaction condition ("contained") as the join condition rather than the usual relational approach
of joining on a common key:

postgis=# SELECT m.name, sum(length(r.the_geom))/1000 as roads_km
FROM bc_roads AS r,bc_municipality AS m
WHERE r.the_geom && m.the_geom
AND contains(m.the_geom,r.the_geom)
GROUP BY m.name
ORDER BY roads_km;

name | roads_km

SURREY | 1539.47553551242

25

Using PostGIS

VANCOUVER | 1450.33093486576
LANGLEY DISTRICT | 833.793392535662
BURNABY | 773.769091404338

PRINCE GEORGE | 694.37554369147

This query takes a while, because every road in the table is summarized into the final result (about 250K roads for
our particular example table). For smaller overlays (several thousand records on several hundred) the response
can be very fast.

4.6.2.4.6.2.1. LCreate a new table with all the roads within the city of Prince George.

This is an example of an "overlay", which takes in two tables and outputs a new table that consists of
spatially clipped or cut resultants. Unlike the "spatial join" demonstrated above, this query actually creates
new geometries. An overlay is like a turbo-charged spatial join, and is useful for more exact analysis work:

postgis=# CREATE TABLE pg_roads as

SELECT intersection(r.the_geom, m.the_geom) AS intersection_geom,
length(r.the_geom) AS rd_orig_length,
r.x

FROM bc_roads AS r, bc_municipality AS m

WHERE r.the_geom && m.the_geom

AND intersects(r.the_geom, m.the_geom)

AND m.name = 'PRINCE GEORGE;

4.6.2.4.6.2.1.6Nhat is the length in kilometers of "Douglas St" in Victoria?

postgis=# SELECT sum(length(r.the_geom))/1000 AS kilometers
FROM bc_roads r, bc_municipality m
WHERE r.the_geom && m.the_geom
AND r.name = 'Douglas St’
AND m.name = 'VICTORIA’;

kilometers
4.89151904172838
(1 row)

4.6.2.4.6.2.1. AVhat is the largest municipality polygon that has a hole?

postgis=# SELECT gid, name, area(the_geom) AS area
FROM bc_municipality
WHERE nrings(the_geom) > 1
ORDER BY area DESC LIMIT 1,

gid | name | area

4

12 | SPALLUMCHEEN | 257374619.430216
(1 row)

4.7. Using Mapserver

The Minnesota Mapserver is an internet web-mapping server which conforms to the OpenGIS Web Mapping Server
specification.

26

Using PostGIS

The Mapserver homepage is at http://mapserver.gis.umn.edu.

The OpenGIS Web Map Specification is at http://www.opengis.org/techno/specs/01-047r2.pdf.

4.7.1. Basic Usage

To use PostGIS with Mapserver, you will need to know about how to configure Mapserver, which is beyond the scope
of this documentation. This section will cover specific PostGIS issues and configuration details.

To use PostGIS with Mapserver, you will need:

Version 0.6 or newer of PostGIS.

Version 3.5 or newer of Mapserver.

Mapserver accesses PostGIS/PostgreSQL data like any other PostgreSQL client bpging This means that
Mapserver can be installed on any machine with network access to the PostGIS server, as long as the system has the
libpg PostgreSQL client libraries.

1.
Compile and install Mapserver, with whatever options you desire, including the "--with-postgis" configuration
option.

2.
In your Mapserver map file, add a PostGIS layer. For example:

LAYER
CONNECTIONTYPE postgis
NAME "widehighways"
Connect to a remote spatial database
CONNECTION "user=dbuser dbname=gisdatabase host=bigserver'
Get the lines from the 'geom’ column of the 'roads’ table
DATA "geom from roads"
STATUS ON
TYPE LINE
Of the lines in the extents, only render the wide highways
FILTER "type = 'highway’ and numlanes >= 4"
CLASS
Make the superhighways brighter and 2 pixels wide
EXPRESSION ([numlanes] >= 6)
COLOR 255 22 22
SYMBOL "solid"
SIZE 2
END
CLASS
All the rest are darker and only 1 pixel wide
EXPRESSION ([numlanes] < 6)
COLOR 205 92 82

27

url(http://mapserver.gis.umn.edu)
url(http://www.opengis.org/techno/specs/01-047r2.pdf)

Using PostGIS

END
END

In the example above, the PostGIS-specific directives are as follows:
*0.60

*0.60 CONNECTIONTYPE
For PostGIS layers, this is always "postgis".

*0.60 CONNECTION
The database connection is governed by the a 'connection string’ which is a standard set of
keys and values like this (with the default values in <>):

user=<username> password=<password> dbname=<username> hostname=<server>
port=<5432>

An empty connection string is still valid, and any of the key/value pairs can be omitted. At a
minimum you will generally supply the database name and username to connect with.

*0.60 DATA
The form of this parameter is "<column> from <tablename>" where the column is the spatial
column to be rendered to the map.

*0.60 FILTER
The filter must be a valid SQL string corresponding to the logic normally following the
"WHERE" keyword in a SQL query. So, for example, to render only roads with 6 or more
lanes, use a filter of "num_lanes >=6".

3.
In your spatial database, ensure you have spatial (GiST) indexes built for any the layers you will be drawing.
CREATE INDEX [indexname]
ON [tablename]
USING GIST ([geometrycolumn] GIST_GEOMETRY_OPS);
4,

If you will be querying your layers using Mapserver you will also need an "oid index".

Mapserver requires unigue identifiers for each spatial record when doing queries, and the PostGIS module of
Mapserver uses the PostgreSQid value to provide these unique identifiers. A side-effect of this is that in
order to do fast random access of records during queries, an index ol the needed.

To build an "oid index", use the following SQL:

CREATE INDEX [indexname] ON [tablename] (oid);

4.7.2. Frequently Asked Questions

4.7.2.4.7.2.1.2When | use ateXPRESSIONn my map file, the condition never returns as true, even though | know
the values exist in my table.

28

Using PostGIS

Unlike shape files, PostGIS field names have to be referenced in EXPRESSION®usingase
EXPRESSION ([numlanes] >= 6)
4.7.2.4.7.2.1.2The FILTER | use for my Shape files is not working for my PostGIS table of the same data.

Unlike shape files, filters for PostGIS layers use SQL syntax (they are appended to the SQL statement the
PostGIS connector generates for drawing layers in Mapserver).

FILTER "type = 'highway’ and numlanes >= 4"
4.7.2.4.7.2.1. My PostGIS layer draws much slower than my Shape file layer, is this normal?

In general, expect PostGIS layers to be 10% slower than equivalent Shape files layers, due to the extra overhead
involved in database connections, data transformations and data transit between the database and Mapserver.

If you are finding substantial draw performance problems, it is likely that you have not build a spatial index on
your table.

postgis# CREATE INDEX geotable gix ON geotable USING GIST (geocolumn);
postgis# SELECT update_geometry stats(); -- For PGSQL < 8.0
postgis# VACUUM ANALYZE; -- For PGSQL >= 8.0

4.7.2.4.7.2.1.4My PostGIS layer draws fine, but queries are really slow. What is wrong?

For queries to be fast, you must have a unique key for your spatial table and you must have an index on that
unique key.

You can specify what unique key for mapserver to use witht8&8NG UNIQUEclause in youDATAline:
DATA "the_geom FROM geotable USING UNIQUE gid"

If your table does not have an explicit unique column, you can "fake" a unique column by using the PostgreSQL
row "oid" for your unique column. "oid" is the default unique column if you do not declare one, so enhancing
your query speed is a matter of building an index on your spatial table oid value.

postgis# CREATE INDEX geotable oid_idx ON geotable (oid);

4.7.3. Advanced Usage

The USING pseudo-SQL clause is used to add some information to help mapserver understand the results of more
complex queries. More specifically, when either a view or a subselect is used as the source table (the thing to the
right of "FROM" in aDATAdefinition) it is more difficult for mapserver to automatically determine a unique identifier
for each row and also the SRID for the table. TW8ING clause can provide mapserver with these two pieces of

information as follows:
DATA "the_geom FROM (SELECT tablel.the_geom AS the geom, tablel.oid AS oid,

table2.data AS data
FROM tablel LEFT JOIN table2 ON tablel.id = table2.id) AS new_table USING
UNIQUE oid USING SRID=-1"

*0.60

29

Using PostGIS

*0.60 USING UNIQUE <uniqueid>

*0.60 USING SRID=<srid>

Warning

Mapserver requires a unique id for each row in order to
identify the row when doing map queries. Normally, it
would use the oid as the unique identifier, but views and
subselects don’t automatically have an oid column. If you
want to use Mapserver’s query functionality, you need to
add a unique column to your view or subselect, and declare
it with USING UNIQUEFor example, you could explicitly
select one of the table’s oid values for this purpose, or any
other column which is guaranteed to be unique for the result
set.

The USING statement can also be useful even for simple
DATA statements, if you are doing map queries. It was
previously recommended to add an index on the oid column
of tables used in query-able layers, in order to speed up the
performance of map queries. However, with tHEING
clause, it is possible to tell mapserver to use your table’s
primary key as the identifier for map queries, and then it is
no longer necessary to have an additional index.

Note

"Querying a Map" is the action of clicking on a map to
ask for information about the map features in that location.
Don’t confuse "map queries" with the SQL query iDATA
definition.

PostGIS needs to know which spatial referencing system is
being used by the geometries in order to return the correct
data back to mapserver. Normally it is possible to find
this information in the "geometry columns" table in the
PostGIS database, however, this is not possible for tables
which are created on the fly such as subselects and views.
So theUSING SRID= option allows the correct SRID to

be specified in th®ATAdefinition.

The parser for Mapserver PostGIS layers is fairly primitive, and is case sensitive in a few areas. Be careful to
ensure that all SQL keywords and all yduSING clauses are in upper case, and that yd8iNG UNIQUE

clause precedes yoWSING SRIDclause.

4.7.4. Examples

Lets start with a simple example and work our way up. Consider the following Mapserver layer definition:

30

Using PostGIS

LAYER
CONNECTIONTYPE postgis
NAME "roads"
CONNECTION "user=theuser password=thepass dbname=thedb host=theserver"
DATA "the_geom FROM roads"
STATUS ON
TYPE LINE
CLASS
COLOR 00O
END
END

This layer will display all the road geometries in the roads table as black lines.

Now lets say we want to show only the highways until we get zoomed in to at least a 1:100000 scale - the next two
layers will acheive this effect:
LAYER
CONNECTION "user=theuser password=thepass dbname=thedb host=theserver"
DATA "the_geom FROM roads"
MINSCALE 100000
STATUS ON
TYPE LINE
FILTER "road_type = 'highway
CLASS
COLOR 00O
END
END

mn

LAYER
CONNECTION "user=theuser password=thepass dbname=thedb host=theserver"
DATA "the_geom FROM roads"
MAXSCALE 100000
STATUS ON
TYPE LINE
CLASSITEM road_type
CLASS
EXPRESSION "highway"
SIZE 2
COLOR 255 0 0
END
CLASS
COLOR 00O
END
END

The first layer is used when the scale is greater than 1:100000, and displays only the roads of type "highway" as black
lines. TheFILTER option causes only roads of type "highway" to be displayed.

The second layer is used when the scale is less than 1:100000, and will display highways as double-thick red lines,
and other roads as regular black lines.

31

Using PostGIS

So, we have done a couple of interesting things using only mapserver functionality, IRADASQL statement has
remained simple. Suppose that the name of the road is stored in another table (for whatever reason) and we need to do
a join to get it and label our roads.
LAYER
CONNECTION "user=theuser password=thepass dbname=thedb host=theserver"
DATA "the_geom FROM (SELECT roads.oid AS oid, roads.the_geom AS the_ geom,
road_names.name as name

FROM roads LEFT JOIN road_names ON roads.road_name_id =
road_names.road_name_id) AS named_roads

USING UNIQUE oid USING SRID=-1"
MAXSCALE 20000
STATUS ON
TYPE ANNOTATION
LABELITEM name
CLASS

LABEL

ANGLE auto

SIZE 8

COLOR 0192 0

TYPE truetype

FONT arial

END
END
END

<«

This annotation layer adds green labels to all the roads when the scale gets down to 1:20000 or less. It also demonstrates
how to use an SQL join in BATAdefinition.

4.8. Java Clients (JDBC)

Java clients can access PostGIS "geometry" objects in the PostgreSQL database either directly as text representations
or using the JDBC extension objects bundled with PostGIS. In order to use the extension objects, the "postgis.jar" file
must be in your CLASSPATH along with the "postgresql.jar* JDBC driver package.

32

Using PostGIS

import java.sql.*;
import java.util.*;
import java.lang.*;
import org.postgis.*;

public class JavaGlIS {
public static void main(String[] args)
{
java.sqgl.Connection conn;
try
{
/*
* Load the JDBC driver and establish a connection.
*/
Class.forName("org.postgresql.Driver");
String url = "jdbc:postgresql://localhost:5432/database”;
conn = DriverManager.getConnection(url, "postgres”, "™);

/*

* Add the geometry types to the connection. Note that you

* must cast the connection to the pgsgl-specific connection *
implementation before calling the addDataType() method.

*/

((org(zostgresql.Connection)conn).addDataType("geometry","org.postgis.PGgeometry");

((org?ostgresql.Connection)conn).addDataType("bode","org.postgis.PGbode");

/*
* Create a statement and execute a select query.
*/
Statement s = conn.createStatement();
ResultSet r = s.executeQuery("select AsText(geom) as geom,id from
geomtable");
while(r.next())
{
/*
* Retrieve the geometry as an object then cast it to the geometry type.
* Print things out.
*/
PGgeometry geom = (PGgeometry)r.getObject(1);
int id = r.getint(2);
System.out.printin("Row " + id + ™");
System.out.println(geom.toString());
}
s.close();
conn.close();

}

catch(Exception e)

{
e.printStackTrace();
}
}
)

33

Using PostGIS

The "PGgeometry" object is a wrapper object which contains a specific topological geometry object (subclasses
of the abstract class "Geometry") depending on the type: Point, LineString, Polygon, MultiPoint, MultiLineString,
MultiPolygon.

PGgeometry geom = (PGgeometry)r.getObject(1);

if(geom.getType() = Geometry.POLYGON)

Polygon pl = (Polygon)geom.getGeometry();
for(int r = 0; r < pl.numRings(); r++)
{
LinearRing rng = pl.getRing(r);
System.out.printin("Ring: " + r);
for(int p = 0; p < rng.numPoints(); p++)
{
Point pt = rng.getPoint(p);
System.out.printin("Point: " + p);
System.out.printIn(pt.toString());
}
}
}

The JavaDoc for the extension objects provides a reference for the various data accessor functions in the geometric
objects.

4.9. C Clients (libpq)
4.9.1. Text Cursors

4.9.2. Binary Cursors

34

Chapter 5. Performance tips

5.1. Small tables of large geometries

5.1.1. Problem description

Current PostgreSQL versions (including 8.0) suffer from a query optimizer weakness regarding TOAST ta-
bles. TOAST tables are a kind of "extension room" used to store large (in the sense of data size) values that
do not fit into normal data pages (like long texts, images or complex geometries with lots of vertices), see
http://www.postgresgl.org/docs/8.0/static/storage-toast.html for more information).

The problem appears if you happen to have a table with rather large geometries, but not too much rows of them (like
a table containing the boundaries of all european countries in high resolution). Then the table itsself is small, but it
uses lots of TOAST space. In our example case, the table itsself had about 80 rows and used only 3 data pages, but the
TOAST table used 8225 pages.

Now issue a query where you use the geometry operator && to search for a bounding box that matches only very
few of those rows. Now the query optimizer sees that the table has only 3 pages and 80 rows. He estimates that a
sequential scan on such a small table is much faster than using an index. And so he decides to ignore the GIST index.
Usually, this estimation is correct. But in our case, the && operator has to fetch every geometry from disk to compare
the bounding boxes, thus reading all TOAST pages, too.

To see whether your suffer from this bug, use the "EXPLAIN ANALYZE" postgresgl command. For more
information and the technical details, you can read the thread on the postgres performance mailing list:
http://archives.postgresqgl.org/pgsql-performance/2005-02/msg00030.php

5.1.2. Workarounds

The PostgreSQL people are trying to solve this issue by making the query estimation TOAST-aware. For now, here
are two workarounds:

The first workaround is to force the query planner to use the index. Send "SET enable_seqscan TO off;" to the server
before issuing the query. This basically forces the query planner to avoid sequential scans whenever possible. So it
uses the GIST index as usual. But this flag has to be set on every connection, and it causes the query planner to make
misestimations in other cases, so you should "SET enable_seqgscan TO on;" after the query.

The second workaround is to make the sequential scan as fast as the query planner thinks. This can be achieved by
creating an additional column that "caches" the bbox, and matching against this. In our example, the commands are
like:

SELECT addGeometryColumn(’'myschema’,’mytable’,’bbox’,’4326’,GEOMETRY",’2’);

UPDATE mytable set bbox = Envelope(Force_2d(the_geom));

Now change your query to use the && operator against bbox instead of geom_column, like:

SELECT geom_column FROM mytable WHERE bbox && SetSrid('BOX3D(0 0,1
1)’::box3d,4326);

35

Performance tips

Of yourse, if you change or add rows to mytable, you have to keep the bbox "in sync". The most transparent way to do
this would be triggers, but you also can modify your application to keep the bbox column current or run the UPDATE
guery above after every modification.

5.2. CLUSTERIng on geometry indices

For tables that are mostly read-only, and where a single index is used for the majority of queries, PostgreSQL offers
the CLUSTER command. This command physically reorders all the data rows in the same order as the index criteria,
yielding two performance advantages: First, for index range scans, the number of seeks on the data table is drastically
reduced. Second, if your working set concentrates to some small intervals on the indices, you have a more efficient
caching because the data rows are spread along fewer data pages. (Feel invited to read the CLUSTER command
documentation from the PostgreSQL manual at this point.)

However, currently PostgreSQL does not allow clustering on PostGIS GIST indices because GIST indices simply
ignores NULL values, you get an error message like:

lwgeom=# CLUSTER my_geom_index ON my_table;
ERROR: cannot cluster when index access method does not handle null values
HINT: You may be able to work around this by marking column "the_geom" NOT NULL.

As the HINT message tells you, one can work around this deficiency by adding a "not null" constraint to the table:

Iwgeom=# ALTER TABLE my_table ALTER COLUMN the_geom SET not null;
ALTER TABLE

Of course, this will not work if you in fact need NULL values in your geometry column. Additionally, you must
use the above method to add the constraint, using a CHECK constraint like "ALTER TABLE blubb ADD CHECK
(geometry is not null);" will not work.

5.3. Avoiding dimension conversion

Sometimes, you happen to have 3D or 4D data in your table, but always access it using OpenGIS compliant asText()
or asBinary() functions that only output 2D geometries. They do this by internally calling the force_2d() function,
which introduces a significant overhead for large geometries. To avoid this overhead, it may be feasible to pre-drop
those additional dimensions once and forever:

UPDATE mytable SET the _geom = force_2d(the_geom);
VACUUM FULL ANALYZE mytable;

Note that if you added your geometry column using AddGeometryColumn() there’ll be a constraint on geometry
dimension. To bypass it you will need to drop the constraint. Remember to update the entry in the geometry_columns
table and recreate the constraint afterwards.

In case of large tables, it may be wise to divide this UPDATE into smaller portions by constraining the UPDATE
to a part of the table via a WHERE clause and your primary key or another feasible criteria, and running a simple
"VACUUM;" between your UPDATEs. This drastically reduces the need for temporary disk space. Additionally,
if you have mixed dimension geometries, restricting the UPDATE by "WHERE dimension(the_geom)>2" skips re-
writing of geometries that already are in 2D.

36

Chapter 6. PostGIS Reference

The functions given below are the ones which a user of PostGIS is likely to need. There are other functions which are
required support functions to the PostGIS objects which are not of use to a general user.

6.1. OpenGIS Functions

6.1.1. Management Functions
*0.60

* 0.60 AddGeometryColumn(varchar, varchar, varchar, integer, varchar, integer)
Syntax: AddGeometryColumn(<schema_name>, <ta-
ble_name>, <column_name>, <srid>, <type>, <dimen-
sion>). Adds a geometry column to an existing table of
attributes. Theschema_name is the name of the table
schema (unused for pre-schema PostgreSQL installa-
tions). Thesrid must be an integer value reference to an
entry in the SPATIAL_REF_SYS table. Thgpe must
be an uppercase string corresponding to the geometry
type, eg, 'POLYGON'’ or 'MULTILINESTRING’.

* 0.60 DropGeometryColumn(varchar, varchar, varchar)
Syntax: DropGeometryColumn(<schema_name>, <ta-
ble_name>, <column_name>). Remove a geometry
column from a spatial table. Note that schema_name will
need to match the f_schema_name field of the table’s row
in the geometry_columns table.

* 0.60 SetSRID(geometry)
Set the SRID on a geometry to a particular integer value.
Useful in constructing bounding boxes for queries.

6.1.2. Geometry Relationship Functions
*0.60

* 0.60 Distance(geometry,geometry)
Return the cartesian distance between two geometries in
projected units.

* 0.60 Equals(geometry,geometry)
Returns 1 (TRUE) if this Geometry is "spatially equal” to
anotherGeometry. Use this for a ’better’ answer than '='.
equals CLINESTRING(O 0, 10 10)’,LINESTRING(O O,
55, 10 10)") is true.

Performed by the GEOS module

OGC SPECs2.1.1.2

37

PostGIS
Reference

* 0.60 Disjoint(geometry,geometry)

* 0.60 Intersects(geometry,geometry)

* 0.60 Touches(geometry,geometry)

* 0.60 Crosses(geometry,geometry)

38

Returns 1 (TRUE) if this Geometry is "spatially disjoint"
from anotherGeometry.

Performed by the GEOS module
Do not call with a GeometryCollection as an argument

NOTE: this is the "allowable" version that returns a
boolean, not an integer.

OGC SPEC s2.1.1.2 //s2.1.13.3 - a.Relate(b,
1|:|:*|:|:****’)

Returns 1 (TRUE) if this Geometry "spatially intersects"
anotherGeometry.

Performed by the GEOS module
Do not call with a GeometryCollection as an argument

NOTE: this is the "allowable" version that returns a
boolean, not an integer.

OGC SPEC s2.1.1.2 //s2.1.13.3 - Intersects(gl, g2) -->
Not (Disjoint(gl, g2))

Returns 1 (TRUE) if this Geometry "spatially touches"
anotherGeometry.

Performed by the GEOS module
Do not call with a GeometryCollection as an argument

NOTE: this is the "allowable" version that returns a
boolean, not an integer.

OGC SPEC s2.1.1.2 /] s2.1.13.3- a.Touches(b) -> (I(a)
intersection I(b) = {empty set}) and (a intersection b) not
empty

Returns 1 (TRUE) if this Geometry "spatially crosses"
anotherGeometry.

Performed by the GEOS module

Do not call with a GeometryCollection as an argument

NOTE: this is the "allowable" version that returns a
boolean, not an integer.

OGC SPEC s2.1.1.2 /I s2.1.13.3 - a.Relate(b,
'T*T******’)

PostGIS
Reference

* 0.60 Within(geometry,geometry)

* 0.60 Overlaps(geometry,geometry)

* 0.60 Contains(geometry,geometry)

* 0.60 Intersects(geometry,geometry)

39

Returns 1 (TRUE) if this Geometry is "spatially within"
anotherGeometry.

Performed by the GEOS module
Do not call with a GeometryCollection as an argument

NOTE: this is the "allowable" version that returns a
boolean, not an integer.

OGC SPEC s2.1.1.2 /I s2.1.13.3 - a.Relate(b,
’T*F**F***’)

Returns 1 (TRUE) if this Geometry is "spatially overlap-
ping" anotherGeometry.

Performed by the GEOS module

Do not call with a GeometryCollection as an argument

NOTE: this is the "allowable" version that returns a
boolean, not an integer.

OGC SPECs2.1.1.2//s2.1.13.3

Returns 1 (TRUE) if this Geometry is "spatially contains"
anotherGeometry.

Performed by the GEOS module
Do not call with a GeometryCollection as an argument

NOTE: this is the "allowable" version that returns a
boolean, not an integer.

OGC SPEC s21.12 // s21.133 - same as
within(geometry,geometry)

Returns 1 (TRUE) if this Geometry is "spatially inter-
sects" anotherGeometry.

Performed by the GEOS module
Do not call with a GeometryCollection as an argument

NOTE: this is the "allowable" version that returns a
boolean, not an integer.

OGC SPEC s21.1.2 // s2.1.13.3 - NOT dis-
joint(geometry,geometry)

PostGIS
Reference

* 0.60 Relate(geometry,geometry, intersectionPatternMatrix)

* 0.60 Relate(geometry,geometry)

Returns 1 (TRUE) if this Geometry is spatially related to
anotherGeometry, by testing for intersections between the
Interior, Boundary and Exterior of the two geometries as
specified by the values in the intersectionPatternMatrix.

Performed by the GEOS module
Do not call with a GeometryCollection as an argument

NOTE: this is the "allowable" version that returns a
boolean, not an integer.

OGC SPECs2.1.1.2//s2.1.13.3

returns the DE-9IM (dimensionally extended nine-
intersection matrix)

Performed by the GEOS module
Do not call with a GeometryCollection as an argument

not in OGC spec, but implied. see s2.1.13.2

6.1.3. Geometry Processing Functions

*0.60

* 0.60 Centroid(geometry)

* 0.60 Area(geometry)

* 0.60 Length(geometry)

* 0.60 PointOnSurface(geometry)

40

Returns the centroid of the geometry as a point.

Computation will be more accurate if performed by the
GEOS module (enabled at compile time).

Returns the area of the geometry if it is a polygon or multi-
polygon.

The length of this Curve in its associated spatial reference.

synonym for length2d()

OGCSPEC2.15.1

Return a Point guaranteed to lie on the surface
Implemented using GEOS

OGC SPEC 3.2.14.2 and 3.2.18.2 -

PostGIS
Reference

* 0.60 Boundary(geometry)

* 0.60 Buffer(geometry,double,[integer])

* 0.60 ConvexHull(geometry)

* 0.60 Intersection(geometry,geometry)

* 0.60 SymDifference(geometry,geometry)

41

Returns the closure of the combinatorial boundary of this
Geometry. The combinatorial boundary is defined as de-
scribed in section 3.12.3.2 of the OGC SPEC. Because the
result of this function is a closure, and hence topologically
closed, the resulting boundary can be represented using
representational geometry primitives as discussed in the
OGC SPEC, section 3.12.2.

Performed by the GEOS module

OGC SPECs2.1.1.1

Returns a geometry that represents all points whose dis-
tance from this Geometry is less than or equal to distance.
Calculations are in the Spatial Reference System of this
Geometry. The optional third parameter sets the number
of segment used to approximate a quarter circle (defaults
to 8).

Performed by the GEOS module
Do not call with a GeometryCollection as an argument

OGC SPECs2.1.1.3

Returns a geometry that represents the convex hull of this
Geometry.

Performed by the GEOS module

OGC SPECs2.1.1.3

Returns a geometry that represents the point set intersec-
tion of this Geometry with anotherGeometry.

Performed by the GEOS module
Do not call with a GeometryCollection as an argument

OGC SPECs2.1.1.3

Returns a geometry that represents the point set symmet-
ric difference of this Geometry with anotherGeometry.

Performed by the GEOS module
Do not call with a GeometryCollection as an argument

OGC SPEC s2.1.1.3

PostGIS
Reference

* 0.60 Difference(geometry,geometry)

* 0.60 GeomUnion(geometry,geometry)

* 0.60 GeomUnion(geometry set)

* 0.60 MemGeomUnion(geometry set)

6.1.4. Geometry Accessors
*0.60

* 0.60 AsText(geometry)

42

Returns a geometry that represents the point set symmet-
ric difference of this Geometry with anotherGeometry.

Performed by the GEOS module
Do not call with a GeometryCollection as an argument

OGCSPECs2.1.1.3

Returns a geometry that represents the point set union of
this Geometry with anotherGeometry.

Performed by the GEOS module
Do not call with a GeometryCollection as an argument

NOTE: this is renamed from "union" because union is an
SQL reserved word

OGCSPECs2.1.1.3

Returns a geometry that represents the point set union of
this all Geometries in given set.

Performed by the GEOS module

Do not call with a GeometryCollection in the argument
set

Not explicitly defined in OGC SPEC

Same as the above, only memory-friendly (uses less mem-
ory and more processor time).

Return the Well-Known Text representation of the geom-
etry. For example: POLYGON(00,01,11,10,00)

OGC SPECs2.1.1.1

PostGIS
Reference

* 0.60 AsBinary(geometry)
Returns the geometry in the OGC "well-known-binary"
format, using the endian encoding of the server on which
the database is running. This is useful in binary cursors
to pull data out of the database without converting it to a
string representation.

OGC SPEC s2.1.1.1 - also see asBinary(<geometry>'XDR’)
and asBinary(<geometry>'NDR")

* 0.60 SRID(geometry)
Returns the integer SRID number of the spatial reference
system of the geometry.

OGC SPECs2.1.1.1

* 0.60 Dimension(geometry)
The inherent dimension of this Geometry object, which
must be less than or equal to the coordinate dimension.
OGC SPEC s2.1.1.1 - returns O for points, 1 for lines, 2 for
polygons, and the largest dimension of the components of
a GEOMETRYCOLLECTION.

select dimension(GEOMETRYCOLLECTION(LINESTRING(1
1,0 0),POINT(0 0));
dimension

>

* 0.60 Envelope(geometry)
Returns a POLYGON representing the bounding box of
the geometry.

OGC SPEC s2.1.1.1 - The minimum bounding box for
this Geometry, returned as a Geometry. The polygon is
defined by the corner points of the bounding box ((MINX,
MINY), (MAXX, MINY), (MAXX, MAXY), (MINX,
MAXY), (MINX, MINY)).

NOTE:PostGIS will add a Zmin/Zmax coordinate as well.

* 0.60 ISEmpty(geometry)
Returns 1 (TRUE) if this Geometry is the empty geometry
. If true, then this Geometry represents the empty point set
-i.e. GEOMETRYCOLLECTION(EMPTY).

OGC SPECs2.1.1.1

*0.60 IsSimple(geometry)
Returns 1 (TRUE) if this Geometry has no anomalous ge-
ometric points, such as self intersection or self tangency.

Performed by the GEOS module

OGCSPECs2.1.11

43

PostGIS
Reference

* 0.60 IsClosed(geometry)

* 0.60 IsRing(geometry)

* 0.60 NumGeometries(geometry)

* 0.60 GeometryN(geometry,int)

* 0.60 NumPoints(geometry)

* 0.60 PointN(geometry,integer)

* 0.60 ExteriorRing(geometry)

* 0.60 NumlInteriorRings(geometry)

* 0.60 InteriorRingN(geometry,integer)

* 0.60 EndPoint(geometry)

44

Returns true of the geometry start and end points are
coincident.

Returns 1 (TRUE) if this Curve is closed (StartPoint ()
= EndPoint ()) and this Curve is simple (does not pass
through the same point more than once).

performed by GEOS

OGCspec2.1.5.1

If geometry is a GEOMETRYCOLLECTION (or
MULTI*) return the number of geometries, otherwise
return NULL.

Return the N'th geometry if the geometry is a GE-
OMETRYCOLLECTION, MULTIPOINT, MULTI-
LINESTRING or MULTIPOLYGON. Otherwise, return
NULL.

1is 1st geometry

Find and return the number of points in the first linestring
in the geometry. Return NULL if there is no linestring in
the geometry.

Return the N'th point in the first linestring in the geome-
try. Return NULL if there is no linestring in the geometry.

Return the exterior ring of the polygon geometry. Return
NULL if the geometry is not a polygon.

Return the number of interior rings of the first polygon in
the geometry. Return NULL if there is no polygon in the
geometry.

Return the N'th interior ring of the polygon geometry.
Return NULL if the geometry is not a polygon or the
given N is out of range (1-based).

Returns the last point of the LineString geometry as a
point.

PostGIS
Reference

* 0.60 StartPoint(geometry)
Returns the first point of the LineString geometry as a
point.

* 0.60 GeometryType(geometry)
Returns the type of the geometry as a string. Eg:
'‘LINESTRING’, 'POLYGON’, 'MULTIPOINT", etc.

OGC SPEC s2.1.1.1 - Returns the name of the instantiable
subtype of Geometry of which this Geometry instance
is a member. The name of the instantiable subtype of
Geometry is returned as a string.

* 0.60 X(geometry)
Find and return the X coordinate of the first point in
the geometry. Return NULL if there is no point in the
geometry.

*0.60 Y(geometry)
Find and return the Y coordinate of the first point in
the geometry. Return NULL if there is no point in the
geometry.

*0.60 Z(geometry)
Find and return the Z coordinate of the first point in
the geometry. Return NULL if there is no point in the
geometry.

6.1.5. Geometry Constructors
*0.60

* 0.60 GeomFromText(text,[<srid>])
Makes a Geometry from WKT with the given SRID.

OGC SPEC 3.2.6.2 - option SRID is from the confor-
mance suite

* 0.60 PointFromText(text,[<srid>])
Makes a Geometry from WKT with the given SRID. If
SRID is not give, it defaults to -1.

OGC SPEC 3.2.6.2 - option SRID is from the confor-
mance suite

Throws an error if the WKT is not a Point

* 0.60 LineFromText(text,[<srid>])
Makes a Geometry from WKT with the given SRID. If
SRID is not give, it defaults to -1.

OGC SPEC 3.2.6.2 - option SRID is from the confor-
mance suite

Throws an error if the WKT is not a Line

45

PostGIS
Reference

* 0.60 LinestringFromText(text,[<srid>])

* 0.60 PolyFromText(text,[<srid>])

* 0.60 PolygonFromText(text,[<srid>])

* 0.60 MPointFromText(text,[<srid>])

* 0.60 MLineFromText(text,[<srid>])

* 0.60 MPolyFromText(text,[<srid>])

46

Makes a Geometry from WKT with the given SRID. If
SRID is not give, it defaults to -1.

from the conformance suite

Throws an error if the WKT is not a Line

Makes a Geometry from WKT with the given SRID. If
SRID is not give, it defaults to -1.

OGC SPEC 3.2.6.2 - option SRID is from the confor-
mance suite

Throws an error if the WKT is not a Polygon

Makes a Geometry from WKT with the given SRID. If
SRID is not give, it defaults to -1.

from the conformance suite

Throws an error if the WKT is not a Polygon

Makes a Geometry from WKT with the given SRID. If
SRID is not give, it defaults to -1.

OGC SPEC 3.2.6.2 - option SRID is from the confor-
mance suite

Throws an error if the WKT is not a MULTIPOINT

Makes a Geometry from WKT with the given SRID. If
SRID is not give, it defaults to -1.

OGC SPEC 3.2.6.2 - option SRID is from the confor-
mance suite

Throws an error if the WKT is not a MULTI-
LINESTRING

Makes a Geometry from WKT with the given SRID. If
SRID is not give, it defaults to -1.

OGC SPEC 3.2.6.2 - option SRID is from the confor-
mance suite

Throws an error if the WKT is not a MULTIPOLYGON

PostGIS
Reference

* 0.60 GeomCollFromText(text,[<srid>])

* 0.60 GeomFromWKB(bytea,[<srid>])

* 0.60 GeomFromWKB(bytea,[<srid>])

* 0.60 PointFromWKB(bytea,[<srid>])

* 0.60 LineFromWKB (bytea,[<srid>])

* 0.60 LinestringFromWKB (bytea,[<srid>])

47

Makes a Geometry from WKT with the given SRID. If
SRID is not give, it defaults to -1.

OGC SPEC 3.2.6.2 - option SRID is from the confor-
mance suite

Throws an error if the WKT is not a GEOMETRYCOL-
LECTION

Makes a Geometry from WKB with the given SRID. If
SRID is not give, it defaults to -1.

OGC SPEC 3.2.6.2 - option SRID is from the confor-
mance suite

Makes a Geometry from WKB with the given SRID. If
SRID is not give, it defaults to -1.

OGC SPEC 3.2.7.2 - option SRID is from the confor-
mance suite

Makes a Geometry from WKB with the given SRID. If
SRID is not give, it defaults to -1.

OGC SPEC 3.2.7.2 - option SRID is from the confor-
mance suite

throws an error if WKB is not a POINT

Makes a Geometry from WKB with the given SRID. If
SRID is not give, it defaults to -1.

OGC SPEC 3.2.7.2 - option SRID is from the confor-
mance suite

throws an error if WKB is not a LINESTRING

Makes a Geometry from WKB with the given SRID. If
SRID is not give, it defaults to -1.

from the conformance suite

throws an error if WKB is not a LINESTRING

PostGIS
Reference

* 0.60 PolyFromWKB(bytea,[<srid>])

* 0.60 PolygonFromWKB(bytea,[<srid>])

* 0.60 MPointFromWKB(bytea,[<srid>])

* 0.60 MLineFromWKB(bytea,[<srid>])

* 0.60 MPolyFromWKB(bytea,[<srid>])

* 0.60 GeomCollFromWKB (bytea,[<srid>])

48

Makes a Geometry from WKB with the given SRID. If
SRID is not give, it defaults to -1.

OGC SPEC 3.2.7.2 - option SRID is from the confor-
mance suite

throws an error if WKB is not a POLYGON

Makes a Geometry from WKB with the given SRID. If
SRID is not give, it defaults to -1.

from the conformance suite

throws an error if WKB is not a POLYGON

Makes a Geometry from WKB with the given SRID. If
SRID is not give, it defaults to -1.

OGC SPEC 3.2.7.2 - option SRID is from the confor-
mance suite

throws an error if WKB is not a MULTIPOINT

Makes a Geometry from WKB with the given SRID. If
SRID is not give, it defaults to -1.

OGC SPEC 3.2.7.2 - option SRID is from the confor-
mance suite

throws an error if WKB is not a MULTILINESTRING

Makes a Geometry from WKB with the given SRID. If
SRID is not give, it defaults to -1.

OGC SPEC 3.2.7.2 - option SRID is from the confor-
mance suite

throws an error if WKB is not a MULTIPOLYGON

Makes a Geometry from WKB with the given SRID. If
SRID is not give, it defaults to -1.

OGC SPEC 3.2.7.2 - option SRID is from the confor-
mance suite

throws an error if WKB is not a GEOMETRYCOLLEC-
TION

PostGIS
Reference

6.2. Postgis Extensions

6.2.1. Management Functions

*0.60

* 0.60 DropGeometryTable([<schema_name>], <table_name>)

Drops a table and all its references in geometry _columns.
Note: uses current_schema() on schema-aware pgsql in-
stallations if schema is not provided.

* 0.60 UpdateGeometrySRID([<schema_name>], <table_name>, <column_name>, <srid>)

Update the SRID of all features in a geometry column
updating constraints and reference in geometry_columns.
Note: uses current_schema() on schema-aware pgsql in-
stallations if schema is not provided.

*0.60 update_geometry_stats([<table_name>, <column_name>])

* 0.60 postgis_version()

*0.60 postgis_lib_version()

*0.60 postgis_lib_build_date()

* 0.60 postgis_script_build_date()

* 0.60 postgis_scripts_installed()

* 0.60 postgis_scripts_released()

* 0.60 postgis_geos_version()

* 0.60 postgis_proj_version()

49

Update statistics about spatial tables for use by the query
planner. You will also need to run "VACUUM ANALYZE
[table_name] [column_name]" for the statistics gathering
process to be complete. NOTE: starting with PostgreSQL
8.0 statistics gathering is automatically performed run-
ning "VACUUM ANALYZE".

Returns the version number of the PostGIS func-
tions installed in this database (deprecated, use post-
gis_full_version() instead).

Returns the version number of the PostGIS library.

Returns build date of the PostGIS library.

Returns build date of the PostGIS scripts.

Returns the version number of the Ilwpostgis.sqgl script
installed in this database.

Returns the version number of the lwpostgis.sqgl script
released with the installed postgis lib.

Returns the version number of the GEOS library, or
NULL if GEOS support is not enabled.

Returns the version number of the PROJ4 library, or
NULL if PROJ4 support is not enabled.

PostGIS
Reference

* 0.60 postgis_uses_stats()
Returns true if STATS usage has been enabled, false
otherwise.

* 0.60 postgis_full_version()
Reports full postgis version and build configuration infos.

6.2.2. Operators

*0.60
*0.60A&<B

The "&<" operator returns true if A's bounding box overlaps or is to the left of B's bounding box.
*0.60A &>B

The "&>" operator returns true if A's bounding box overlaps or is to the right of B’s bounding box.
*0.60A<<B

The "<<" operator returns true if As bounding box is strictly to the left of B's bounding box.
*0.60A>>B

The ">>" operator returns true if A's bounding box is strictly to the right of B's bounding box.
*0.60A &<| B

The "&<|" operator returns true if A's bounding box overlaps or is below B’s bounding box.
*0.60A [&> B

The "|&>" operator returns true if A's bounding box overlaps or is above B’s bounding box.
*0.60A<<|B

The "<<|" operator returns true if As bounding box is strictly below B’s bounding box.
*0.60A |>>B

The "|>>" operator returns true if As bounding box is strictly above B’s bounding box.
*0.60A~=B

The "~=" operator is the "same as" operator. It tests actual geometric equality of two features. So if

A and B are the same feature, vertex-by-vertex, the operator returns true.
*0.60A@B

The "@" operator returns true if A's bounding box is completely contained by B’s bounding box.
*0.60A~B

The "~" operator returns true if A's bounding box completely contains B’s bounding box.
*0.60A && B

The "&&" operator is the "overlaps" operator. If A's bounding boux overlaps B’s bounding box the
operator returns true.

6.2.3. Measurement Functions
*0.60

50

PostGIS
Reference

*0.60 area2d(geometry)

* 0.60 distance_sphere(point, point)

* 0.60 distance_spheroid(point, point, spheroid)

* 0.60 length2d(geometry)

* 0.60 length3d(geometry)

* 0.60 length_spheroid(geometry,spheroid)

* 0.60 length3d_spheroid(geometry,spheroid)

51

Returns the area of the geometry if it is a polygon or multi-
polygon.

Returns linear distance in meters between two lat/lon
points. Uses a spherical earth and radius of 6370986
meters. Faster thatistance_spheroid(put less accurate.
Only implemented for points.

Returns linear distance between two lat/lon points given
a particular spheroid. See the explanation of spheroids
given forlength_spheroid()Currently only implemented
for points.

Returns the 2-dimensional length of the geometry if itis a
linestring or multi-linestring.

Returns the 3-dimensional length of the geometry if itis a
linestring or multi-linestring.

Calculates the length of of a geometry on an elipsoid. This
is useful if the coordinates of the geometry are in lati-
tude/longitude and a length is desired without reprojec-
tion. The elipsoid is a separate database type and can be
constructed as follows:

SPHEROID[<NAME>,<SEMI-MAJOR,
AXIS>,<INVERSE FLATTENING>]

Eg:
SPHEROID['"GRS_1980",6378137,298.257222101]
An example calculation might look like this:

SELECT
length_spheroid(
geometry_column,
'SPHEROID["GRS_1980",6378137,298.257222101]

)
FROM geometry table;

Calculates the length of of a geometry on an elipsoid,
taking the elevation into account. This is just like
length_spheroid except vertical coordinates (expressed in
the same units as the spheroid axes) are used to calculate
the extra distance vertical displacement adds.

PostGIS
Reference

* 0.60 distance(geometry, geometry)
* 0.60 max_distance(linestring,linestring)

* 0.60 perimeter(geometry)
* 0.60 perimeter2d(geometry)

* 0.60 perimeter3d(geometry)

6.2.4. Geometry Outputs

*0.60

* 0.60 AsBinary(geometry,{'NDR’|’XDR'})

* 0.60 ASEWKT(geometry)

* 0.60 ASEWKB(geometry, {NDR’|'’XDR'})

* 0.60 AsSVG(geometry, [rel], [precision])

* 0.60 AsGML(geometry, [precision])

6.2.5. Geometry Constructors

*0.60

52

Returns the smaller distance between two geometries.

Returns the largest distance between two line strings.

Returns the 2-dimensional perimeter of the geometry, if it
is a polygon or multi-polygon.

Returns the 2-dimensional perimeter of the geometry, if it
is a polygon or multi-polygon.

Returns the 3-dimensional perimeter of the geometry, if it
is a polygon or multi-polygon.

Returns the geometry in the OGC "well-known-binary"
format as a bytea, using little-endian (NDR) or big-endian
(XDR) encoding. This is useful in binary cursors to pull
data out of the database without converting it to a string
representation.

Returns a Geometry in EWKT format (as text).

Returns a Geometry in EWKB format (as bytea) using
either little-endian (NDR) or big-endian (XDR) encoding.

Return the geometry as an SVG path data. Use 1 as
second argument to have the path data implemented in
terms of relative moves, the default (or 0) uses absolute
moves. Third argument may be used to reduce the maxi-
mum number of decimal digits used in output (defaults to
15). Point geometries will be rendered as cx/cy when 'rel’
arg is 0, x/y when ’rel’ is 1.

Return the geometry as a GML element. Second ar-
gument may be used to reduce the maximum number of
significant digits used in output (defaults to 15).

PostGIS
Reference

* 0.60 GeomFromEWKT (text)

* 0.60 GeomFromEWKB(bytea)

* 0.60 MakePoint(<x>, <y>, [<z>], [<xm>])

* 0.60 MakePointM(<x>, <y>, <m>)

* 0.60 MakeBox2D(<LL>, <UR>)

* 0.60 MakeBox3D(<LLB>, <URT>)

* 0.60 MakeLine(geometry set)

* 0.60 MakeLine(geometry, geometry)

* 0.60 LineFromMultiPoint(multipoint)

* 0.60 AddPoint(linestring, point, [<position>])

* 0.60 MakePolygon(linestring, [linestring[]])

* 0.60 Polygonize(geometry set)

* 0.60 Collect(geometry set)

53

Makes a Geometry from EWKT.

Makes a Geometry from EWKB.

Creates a 2d,3dz or 4d point geometry.

Creates a 3dm point geometry.

Creates a BOX2D defined by the given point geometries.

Creates a BOX3D defined by the given point geometries.

Creates a Linestring from a set of point geometries. You
might want to use a subselect to order points before feed-
ing them to this aggregate.

Creates a Linestring from the two given point geometries.

Creates a LineString from a MultiPoint geometry.

Adds a point to a LineString at position <pos>. Third
parameter can be omitted or set to -1 for appending.

Creates a Polygon formed by the given shell and array of
holes. You can construct a geometry array ughagum
Input geometries must be closed LINESTRINGS (see
IsClosedandGeometry Typg

Aggregate. Creates a GeometryCollection containing
possible polygons formed from the costituent linework of
a set of geometries. Only available when compiled against
GEOS >=2.1.0.

This function returns a GEOMETRYCOLLECTION or a
MULTI object from a set of geometries. The collect()
function is an "aggregate" function in the terminology
of PostgreSQL. That means that it operators on lists of
data, in the same way the sum() and mean() functions
do. For example, "SELECT COLLECT(GEOM) FROM
GEOMTABLE GROUP BY ATTRCOLUMN" will return

a separate GEOMETRYCOLLECTION for each distinct
value of ATTRCOLUMN.

PostGIS
Reference

* 0.60 Collect(geometry, geometry)

*0.60 Dump(geometry)

6.2.6. Geometry Editors

*0.60

* 0.60 AddBBOX(geometry)

*0.60 DropBBOX(geometry)

* 0.60 Force_collection(geometry)

* 0.60 Force_2d(geometry)

* 0.60 Force_3dz(geometrylorce_3d(geometry)
* 0.60 Force_3dm(geometry)

*0.60 Force_4d(geometry)

54

This function returns a geometry being a collection of two
input geometries. Output type can be a MULTI* or a
GEOMETRYCOLLECTION.

This is a set-returning function (SRF). It returns a set of
geometry_dump rows, formed by a geometry (geom) and
an array of integers (path). When the input geometry is a
simple type (POINT,LINESTRING,POLYGON) a single
record will be returned with an empty path array and the
input geometry as geom. When the input geometry is
a collection or multi it will return a record for each of
the collection components, and the path will express the
position of the component inside the collection.

NOTE: this function is not available for builds against
PostgreSQL 7.2.x

Add bounding box to the geometry. This would make
bounding box based queries faster, but will increase the
size of the geometry.

Drop the bounding box cache from the geometry. This
reduces geometry size, but makes bounding-box based
queries slower.

Converts the geometry into a GEOMETRYCOLLEC-
TION. This is useful for simplifying the WKB represen-
tation.

Forces the geometries into a "2-dimensional mode" so
that all output representations will only have the X and

Y coordinates. This is useful for force OGC-compliant

output (since OGC only specifies 2-D geometries).

Forces the geometries into XYZ mode.

Forces the geometries into XYM mode.

Forces the geometries into XYZM mode.

PostGIS
Reference

* 0.60 Multi(geometry)
Returns the geometry as a MULTI* geometry. If the
geometry is already a MULTI*, it is returned unchanged.

* 0.60 Transform(geometry,integer)
Returns a new geometry with its coordinates transformed
to the SRID referenced by the integer parameter. The
destination SRID must exist in tH®PATIAL_REF_SYS
table.

* 0.60 Translate(geometry,float8,float8,float8)
Translates the geometry to a new location using the nu-
meric parameters as offsets. le: translate(geom,X,Y,2).

* 0.60 Reverse(geometry)
Returns the geometry with vertex order reversed.

*0.60 ForceRHR(geometry)
Force polygons of the collection to obey Right-Hand-
Rule.

* 0.60 Simplify(geometry, tolerance)
Returns a "simplified" version of the given geometry us-
ing the Douglas-Peuker algorithm. Will actually do some-
thing only with (multi)lines and (multi)polygons but you
can safely call it with any kind of geometry. Since sim-
plification occurs on a object-by-object basis you can also
feed a GeometryCollection to this function. Note that re-
turned geometry might loose its simplicity (de&imple

* 0.60 SnapToGrid(geometry, originX, originY, sizeX, size®napToGrid(geometry, sizeX, sizeX9napToGrid(geometry, size)

Snap all points of the input geometry to the grid defined
by its origin and cell size. Remove consecutive points
falling on the same cell, eventually returning NULL if
output points are not enough to define a geometry of
the given type. Collapsed geometries in a collection are
stripped from it. Note that returned geometry might loose
its simplicity (sedsSimple.

* 0.60 Segmentize(geometry, maxlength)
Return a modified [multiJpolygon having no ring segment
longer then the given distance. Interpolated points will
have Z and M values (if needed) set to 0. Distance
computation is performed in 2d only.

6.2.7. Misc

*0.60

* 0.60 Summary(geometry)
Returns a text summary of the contents of the geometry.

55

PostGIS
Reference

* 0.60 box2d(geometry)

* 0.60 box3d(geometry)

* 0.60 extent(geometry set)

* 0.60 zmflag(geometry)

* 0.60 HasBBOX(geometry)

* 0.60 ndims(geometry)

* 0.60 nrings(geometry)

* 0.60 npoints(geometry)

* 0.60isvalid(geometry)

* 0.60 expand(geometry, float)

56

Returns a BOX2D representing the maximum extents of
the geometry.

Returns a BOX3D representing the maximum extents of
the geometry.

The extent() function is an "aggregate" function in the
terminology of PostgreSQL. That means that it operators
on lists of data, in the same way the sum() and mean()
functions do. For example, "SELECT EXTENT(GEOM)
FROM GEOMTABLE" will return a BOX3D giving the
maximum extend of all features in the table. Similarly,
"SELECT EXTENT(GEOM) FROM GEOMTABLE
GROUP BY CATEGORY" will return one extent result
for each category.

Returns ZM (dimension semantic) flag of the geometries
as a small int. Values are: 0=2d, 1=3dm, 2=3dz, 3=4d.

Returns TRUE if the bbox of this geometry is cached,
FALSE otherwise. UsaddBBOX()anddropBBOX()to
control caching.

Returns number of dimensions of the geometry as a small
int. Values are: 2,3 or 4.

If the geometry is a polygon or multi-polygon returns the
number of rings.

Returns the number of points in the geometry.

returns true if this geometry is valid.

This function returns a bounding box expanded in all
directions from the bounding box of the input geometry,
by an amount specified in the second argument. Very
useful for distance() queries, to add an index filter to the

query.

PostGIS
Reference

* 0.60 estimated_extent([schema], table, geocolumn)
Return the 'estimated’ extent of the given spatial table.
The estimated is taken from the geometry column’s statis-
tics. The current schema will be used if not specified.

For PostgreSQL>=8.0.0 statistics are gathered by VAC-
UUM ANALYZE and resulting extent will be about 95%
of the real one.

For PostgreSQL<8.0.0 statistics are gathered by up-
date_geometry stats() and resulting extent will be
exact.

*0.60 find_srid(varchar,varchar,varchar)
The syntax is find_srid(<db/schema>, <table>, <col-
umn>) and the function returns the integer SRID of the
specified column by searching through the GEOME-
TRY_COLUMNS table. If the geometry column has not
been properly added with the AddGeometryColumns()
function, this function will not work either.

* 0.60 mem_size(geometry)
Returns the amount of space (in bytes) the geometry takes.

* 0.60 numb_sub_objects(geometry)
Returns the number of objects stored in the geome-
try. This is useful for MULTI-geometries and GEOME-
TRYCOLLECTIONS.

*0.60 point_inside_circle(geometry,float,float,float)
The syntax for this functions is point_inside_circle(<geometry>,<circle
Returns the true if the geometry is a point and is inside
the circle. Returns false otherwise.

*0.60 xmin(box3d) ymin(box3d) zmin(box3d)
Returns the requested minima of a bounding box.

* 0.60 xmax(box3d) ymax(box3d) zmax(box3d)
Returns the requested maxima of a bounding box.

*0.60line_interpolate_point(geometry, proportion)
Interpolates a point along a line. First argument must be a
LINESTRING. Second argument is a float between 0 and
1. Returns a point.

*0.60 Accum(geometry set)
Aggregate. Constructs an array of geometries.

57

Appendix A. Release Notes
A.l. Release 1.0.0

Release date: 2005/04/19

Final 1.0.0 release. Contains a few bug fixes, some improvements in the loader (most notably support for older postgis
versions), and more docs.

A.1.1. Upgrading

If you are upgrading from release 1.0.0RC6 y20 NOTneed a dump/reload.

Upgrading from any other precedent release requires a dump/reload. Spgtadingchapter for more informations.

A.1.2. Library changes
BUGFIX in transform() releasing random memory address
BUGFIX in force_3dm() allocating less memory then required

BUGFIX in join selectivity estimator (defaults, leaks, tuplecount, sd)

A.1.3. Other changes/additions

BUGFIX in shp2pgsql escape of values starting with tab or single-quote
NEW manual pages for loader/dumper

NEW shp2pgsql support for old (HWGEOM) postgis versions

NEW -p (prepare) flag for shp2pgsq|

NEW manual chapter about OGC compliancy enforcement

NEW autoconf support for JTS lib

BUGFIX in estimator testers (support for LWGEOM and schema parsing)

A.2. Release 1.0.0RC6

Release date: 2005/03/30

Sixth release candidate for 1.0.0. Contains a few bug fixes and cleanups.

A.2.1. Upgrading

You need a dump/reload to upgrade from precedent releases. Sewgthdingchapter for more informations.

A.2.2. Library changes

BUGFIX in multi()

58

Release Notes

early return [when noop] from multi()

A.2.3. Scripts changes

dropped {x,yHmin,max}(box2d) functions

A.2.4. Other changes

BUGFIX in postgis_restore.pl scrip

BUGFIX in dumper’s 64bit support

A.3. Release 1.0.0RC5

Release date: 2005/03/25

Fifth release candidate for 1.0.0. Contains a few bug fixes and a improvements.

A.3.1. Upgrading

If you are upgrading from release 1.0.0RC4 y20 NOTneed a dump/reload.

Upgrading from any other precedent release requires a dump/reload. Spgtadingchapter for more informations.

A.3.2. Library changes
BUGFIX (segfaulting) in box3d computation (yes, another!).

BUGFIX (segfaulting) in estimated_extent().

A.3.3. Other changes

Small build scripts and utilities refinements.

Additional performance tips documented.

A.4. Release 1.0.0RC4

Release date: 2005/03/18

Fourth release candidate for 1.0.0. Contains bug fixes and a few improvements.

A.4.1. Upgrading

You need a dump/reload to upgrade from precedent releases. Semthadingchapter for more informations.

A.4.2. Library changes

BUGFIX (segfaulting) in geom_accum().

BUGFIX in 64bit architectures support.

59

Release Notes

BUGFIX in box3d computation function with collections.
NEW subselects support in selectivity estimator.

Early return from force_collection.

Consistency check fix in SnapToGrid().

Box2d output changed back to 15 significant digits.

A.4.3. Scripts changes
NEW distance_sphere() function.

Changed get_proj4_from_srid implementation to use PL/PGSQL instead of SQL.

A.4.4. Other changes

BUGFIX in loader and dumper handling of MultiLine shapes
BUGFIX in loader, skipping all but first hole of polygons.
jdbc2: code cleanups, Makefile improvements

FLEX and YACC variables set *after* pgsqgl Makefile.global is included and only if the pgsql *stripped* version
evaulates to the empty string

Added already generated parser in release
Build scripts refinements
improved version handling, central Version.config

improvements in postgis_restore.pl

A.5. Release 1.0.0RC3

Release date: 2005/02/24

Third release candidate for 1.0.0. Contains many bug fixes and improvements.

A.5.1. Upgrading

You need a dump/reload to upgrade from precedent releases. Sewgthdingchapter for more informations.

A.5.2. Library changes

BUGFIX in transform(): missing SRID, better error handling.

BUGFIX in memory alignment handling

BUGFIX in force_collection() causing mapserver connector failures on simple (single) geometry types.

BUGFIX in GeometryFromText() missing to add a bbox cache.

60

Release Notes

reduced precision of box2d output.
prefixed DEBUG macros with PGIS_ to avoid clash with pgsql one
plugged a leak in GEOS2POSTGIS converter

Reduced memory usage by early releasing query-context palloced one.

A.5.3. Scripts changes

BUGFIX in 72 index bindings.

BUGFIX in probe_geometry_columns() to work with PG72 and support multiple geometry columns in a single table
NEW bool::text cast

Some functions made IMMUTABLE from STABLE, for performance improvement.

A.5.4. JDBC changes

jdbc2: small patches, box2d/3d tests, revised docs and license.

jdbc2: bug fix and testcase in for pgjdbc 8.0 type autoregistration

jdbc2: Removed use of jdk1.4 only features to enable build with older jdk releases.
jdbc2: Added support for building against pg72jdbc2.jar

jdbc2: updated and cleaned makefile

jdbc2: added BETA support for jts geometry classes

jdbc2: Skip known-to-fail tests against older PostGIS servers.

jdbc2: Fixed handling of measured geometries in EWKT.

A.5.5. Other changes

new performance tips chapter in manual

documentation updates: pgsql72 requirement, lwpostgis.sql

few changes in autoconf

BUILDDATE extraction made more portable

fixed spatial_ref_sys.sql to avoid vacuuming the whole database.

spatial_ref_sys: changed Paris entries to match the ones distributed with 0.x.

A.6. Release 1.0.0RC2

Release date: 2005/01/26

Second release candidate for 1.0.0 containing bug fixes and a few improvements.

61

Release Notes

A.6.1. Upgrading

You need a dump/reload to upgrade from precedent releases. Sewgthdingchapter for more informations.

A.6.2. Library changes

BUGFIX in pointarray box3d computation

BUGFIX in distance_spheroid definition

BUGFIX in transform() missing to update bbox cache

NEW jdbc driver (jdbc2)

GEOMETRYCOLLECTION(EMPTY) syntax support for backward compatibility
Faster binary outputs

Stricter OGC WKB/WKT constructors

A.6.3. Scripts changes
More correct STABLE, IMMUTABLE, STRICT uses in lwpostgis.sql

stricter OGC WKB/WKT constructors

A.6.4. Other changes

Faster and more robust loader (both i18n and not)

Initial autoconf script

A.7. Release 1.0.0RC1

Release date: 2005/01/13

This is the first candidate of a major postgis release, with internal storage of postgis types redesigned to be smaller and
faster on indexed queries.

A.7.1. Upgrading

You need a dump/reload to upgrade from precedent releases. Sgmtadingchapter for more informations.

A.7.2. Changes

Faster canonical input parsing.

Lossless canonical output.

EWKB Canonical binary 10 with PG>73.

Support for up to 4d coordinates, providing lossless shapefile->postgis->shapefile conversion.

New function: UpdateGeometrySRID(), AsGML(), SnapToGrid(), ForceRHR(), estimated_extent(), accum().

62

Release Notes

Vertical positioning indexed operators.
JOIN selectivity function.

More geometry constructors / editors.
Postgis extension API.

UTF8 support in loader.

63

