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Abstract

In this paper we present a suite of new image processing tools for GRASS. New modules are sug-
gested to support improved and semi-automated geocoding of vertical imagery. The ortho-rectification
procedures have been extended to rectify oblique imagery from digital hand-held cameras for rendering
purposes. Multi- and hyperspectral image analysis has been implemented to derive landuse/landcover
maps at subpixel resolution. Image fusion with the Brovey transform is shown. We finally show high
performance SMAP image classification on an openMosix cluster.

Keywords: Remote sensing, GIS, image registration, orthophoto, spectral unmixing, image fusion, GRASS
on openMosix Cluster

1 Introduction
Remote sensing at various scales plays a major role in spatio-temporal earth surface monitoring. A wide
range of satellite platforms as well as film and digital aerial photography provide a huge data repository.
Digital image processing in GRASS has been enhanced by a suite of tools as presented in this paper. The in-
tegration of remote sensing tools into a full Geographic Information System (GIS) provides a major advance
over stand-alone solutions. The new methods are applicable both to aerial and satellite imagery.

2 Image registration
While image registration support has been present in GRASS ([10]) for many years, there have been some
restrictions in the flexibility of the provided tools. A basic problem is the time consuming manual identifica-
tion of ground control points (GCPs). To overcome this problem, two new methods have been implemented
which address the GCP identification within time-distant images as well as the semi-automatization of the
GCPs search.

2.1 Image registration by homography
Image registration of heterogeneous data sources such as historical images and present-day orthophotos of-
ten turns out to be complicated due to differences in survey time, camera type and the evolution of the
observed landscape. The search of ground control points becomes very time consuming and may be even
impossible for some part of the image scene. The common way of registering images is to find correspond-
ing points (GPCs). An alternative method is the selection of corresponding lines. Linear structures are more
easily identifiable by human eye than point structures ([2]). In case of image registration of historical im-
ages, substantial changes in the landcover/landuse may render point identification to be impossible while
linear structures such as bridges, streets, and railroads still can be selected. A combined method has been
implemented in the new modules i.linespoints which permits identification of common ground con-
trol points in combination with corresponding lines. A subsequent run of the new module i.homography
allows for homography based image rectification ([3]).

Homography is a simple linear projective transformation of four known points in one planar system
(x, y) to another planar reference system (x’, y’). Thus, this transformation is applicable only to images
covering flat terrain. In the new i.linespoints, the transformation, which was originally developed
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Figure 1: Image registration with homography: Selecting corresponding lines with i.linespoints (left:
NHAP, right SPOT MSS).

for points only has been extended to homogeneous equations which describe a line (t, u). To unify the
two techniques, we developed a method which gives a different weight to points and lines (extending the
approach of [8]) according to a c weighting parameter. To minimize the transformation error, the Brent
minimization algorithm was used to determine the parameter c. Another related method to calculate the
mean error was implemented in order to provide this value to the user for both points and lines types.
Additionally a test set of independent points can be specified and transformed to verify the overall quality of
the rectification for other parts of the image scene.

Figure 1 illustrates the selection of corresponding lines in very heterogeneous images with
i.linespoints. The subsequent use of i.homography rectifies the image to the target LOCATION.

2.2 Semiautomated image registration by Fast Fourier Transform
The classical image registration is done by searching a certain number of corresponding points (ground
control points, GCPs) between two images. One image is selected as reference images. These points are
then used to define a transformation function, usually a polynomial, to rectify the unregistered image. In
current GRASS versions these GCPs have to be identified manually.

The new module i.coregister provides an alternative, semiautomated approach to find correspond-
ing points in two overlapping images ([7]). GCPs are found by maximizing the cross-correlation within
master-slave search windows between the two images. The cross-correlation is calculated by a frequency
analysis of the Fourier transformed search windows.

In order to obtain high registration accuracy, first two regions are roughly indicated on screen by mouse,
with very general requirements to image dimensions and overlapping zone characteristics. After determining
the size of these search windows (Sd, see Fig. 2), the search window jump distance (S j, jump in pixels when
moving the search window) and the search window border (Sb, minimum distance to keep from border, set to
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Figure 2: Definition of search windows in FFT based image correlation (i.coregister)

Sd /2) the algorithm searches for the shift maximizing the cross-correlation between the two search windows.
Let I1 � x � y � and I2 � x � y � be the current master and slave search windows respectively. The cross-correlation
is defined as

H � t1 � t2 ���	�
Sr

I1 � x � y � I2 � x 
 t1 � y 
 t2 � dµ � (1)

where Sr is the search region and t1 and t2 represent the horizontal and vertical shifts respectively. The
convolution theorem allows us to compute the cross-correlation in terms of the Fourier Transforms of I1 and
I2:

H � t1 � t2 ������ 1 � � � I1 ����� � I2 ����� (2)

where � indicates the Fourier Transform and � � its complex conjugate. The position of the maximum cor-
relation value, � t̄1 � t̄2 ��� max�

t1 � t2 � H � t1 � t2 � , determines the position of the GCP for the current pair of master/slave

search windows.
The set of GCPs is saved into the common GRASS POINTS structure for later use with i.rectify.

Fig. 3 shows an example for the automated search of GCPs by cross-correlation in a user-defined search
region.

The list of GCPs generated by i.coregister can optionally be converted into the 3D POINTS struc-
ture of i.ortho.photo by a new script i.pointsfile2orthopointsfile.sh which merges the
POINTS file with a user specified camera file and elevations which are automatically queried from a DEM.

2.3 Image registration of oblique aerial photos from digital hand-held cameras
A new application of the i.ortho.photo algorithm is proposed for the registration of oblique imagery
as produced by handheld digital cameras ([6]). The underlying idea is to improve the visual perception of
perspective rendering based on orthophotos. While oblique rendering using a digital elevation model and
orthophotos usually suffers from perspective displacements, we show that digital photos taken by cheap
digital cameras can be geocoded and used to improve the visual perception.

The existing ortho-rectification algorithm has been tested for� usage of digital images which are lacking fiducial marks;� estimation of the focal length of digital hand-held cameras;� estimation of exterior orientation of oblique photographs taken by a digital hand-held camera.
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Figure 3: Automated search of GCPs by cross-correlation in a user-defined search region (i.coregister)

Most digital hand-held cameras create photos in JPEG format with EXIF (Exchangeable Image File)
extension which stores metadata of the camera. Using a JHEAD EXIF JPEG camera setting parser1 camera
parameters can be extracted, such as shutter speed, the distance the camera was focused at, focal length and
the calculated 35 mm equivalent focal length, image size and resolution, the time and date the picture was
taken, as well as the camera maker and model.

The estimation of the parameters of the exterior orientation is done using the “Space Resection by
Collinearity” method following the approach of [18]. Space Resection is a method of determining the six
elements of exterior orientation of a single tilted photograph. Based on least squares techniques the most
probable values for the six elements are determined.

In order to rectify an oblique image with i.ortho.photo, the following modifications to the standard
procedure have to be applied:� the focal length is taken from the JHEAD output;� the number of fiducial marks is set to four, their positions are centered on each side of the photo. To

get the position in millimeters, the relation between the longer and the shorter side of the photo is
considered (in case of a non-quadratic photo), as well as the resolution versus the photo size in pixels;� initial parameters for the exterior orientation have to be estimated and entered into the related screen
of i.ortho.photo:

– the x, y, z coordinates of the camera position can be easily estimated from DTM with
d.what.rast or the “What’s here” functionality of nviz;

– the orientation angles (ω , φ , κ) of the camera can be estimated with d.measure;� the ground control points are identified as usual, however, the user has to take care to select appropriate
points in both the oblique photo and the map/orthophoto reference (usually object corners).

Finally the ortho-rectification is performed. A detailed report of the parameter estimation can be ob-
tained by recompilation of i.ortho.photo with debug option enabled. Fig. 4 shows an example for the
registration of an oblique photo.

1JHEAD EXIF JPEG camera setting parser, http://www.sentex.net/~mwandel/jhead/
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Figure 4: Perspective rendering of an oblique photo taken by a digital hand-held camera (registered by
i.ortho.photo), the photo is draped over an orthophoto

3 New image classification tools with subpixel accuracy

In this section of the paper we present two methods for analyzing multi- and hyperspectral data. Hyperspec-
tral sensors divide the waveband-range of interest into hundreds of contiguous narrow bands. This spectral
sampling is then subject to signature analysis, usually based on a spectral library containing a large set of
laboratory spectra or on geometrical search for pure spectra in the image scene itself. The data in each pixel
can be understood as a cube of two spatial dimensions and a third spectral dimension, the wavelength. One
or many objects are covered by a pixel, resulting in mostly mixed spectral signals of objects within each
pixel.

A common model to describe these mixed signals is assumption of linear mixing (linear mixture model,
LMM). The methods of spectral angle mapping and spectral unmixing decompose the mixed signal into
a set of known spectra (endmembers) from the spectral library. This results in a classifier with subpixel
accuracy as for each endmember an abundance map is produced. Difficulties arise from various factors such
as dependence on sun angle, atmospheric absorption and scattering, reflections and shadowing, as well as
spatial and spectral aberrations in the sensor [14].

3.1 Spectral Angle Mapping

Spectral angle mapping has been implemented in the new module i.spectral.sam ([9]). For a set of
bands the algorithm is calculating the angles to a set of object spectra which are read from a spectral library.
SAM is invariant to unknown multiplicative scalings and, consequently, is invariant to unknown deviations
that may arise from different illumination and angle orientation ([5]). Details are explained in the next
section, see eq. 12.
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3.2 Spectral Unmixing
Spectral unmixing for landuse/landcover mapping at subpixel precision has been implemented in the module
i.spectral.unmix ([9]). Multi- and hyperspectral data can be analyzed against a spectral library (e.g.
USGS Digital Spectral Library2, ASTER spectral library3). The module generates as many abundance maps
as object spectra are used. The implemented algorithm assumes the linear mixture of object spectra (also
called “endmembers”) within each pixel.

The general case is a set of linear equations with m equations and n endmember spectra [15]. The number
of equations m is identical to the number of bands of the sensor. The fractions of endmembers represent the
percentage of landuse/landcover within the actual pixel. The number of endmember which can be extracted
is as high as the number of bands. Written as a general system of equations:

a11x1 
 a12x2 
 ������
 a1nxn � b1
a21x1 
 a22x2 
 ������
 a2nxn � b2

...
...

...
...

...
am1x1 
 am2x2 
 ������
 amnxn � bm

(3)

The rows correspond to the bands (m bands) and the columns to the endmember spectra (n endmembers).
The constants ai j represent the reflection value in the ith band (0 � i � m) of the jth object (0 � j � n). The
percentage of an endmember fraction within a pixel is x j while bi describes the overall pixel value of the ith
band. This can be rewritten as:�

���� a11 a12 ����� a1n
a21 a22 ����� a2n

...
... ����� ...

am1 am2 ����� amn

 "!!!#
�
���� x1

x2
...

xn

 "!!!# �
�
���� b1

b2
...

bm

 "!!!# (4)

and simplified to:

Ax � b (5)

Here A depicts the matrix of reference spectra, the vector x the percentage fraction of spatial distribution
within the pixel and the vector b the pixel values in the image scene.

To solve this system of equations, it is required to have m � n which means that the number of objects
to be analyzed can be lower or as much as the number of bands available. In case of m � n the matrix A
is quadratic. An additional condition is that the equations should be linearly independent, i.e the matrix A
needs to have a large rank.

The unknown vector x can be calculated as:

x � A  1b (6)

But to get physically meaningful results, we must enforce two boundary conditions:
First, the sum of all fractions must be 100% (full additivity, assuming the case that at least one reference

spectrum is found in each pixel):

n

∑
j $ 1

x j � 1 (7)

Second, the fractions must be zero or positive as no negative area sizes exist in nature (non-negativity):

x j % 0 for all j � (8)

The ideal solution of the rewritten eq. 6 is zero:

A  1b & x !� 0 (9)

2USGS Digital Spectral Library, http://speclab.cr.usgs.gov/spectral-lib.html
3ASTER spectral library, http://speclib.jpl.nasa.gov
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Figure 5: Permitted (bright) and undesired (dark) negative solution space of a two-dimensional (a) and of a
three-dimensional spectral unmixing (b) with constraints (after [16])

But due to limitations in the accuracy of the reference spectra, limitations in the assumption of linear
mixture and natural deviations of the object spectra from the reference spectra, the eq. 6 cannot be solved.
To overcome this problem, an error term ε is introduced to cover the unidentifiable object spectra and noise:

A  1b & x � ε (10)

Because vector x and error ε are unknown, the equation can be solved by minimizing the error ε through
least-squares. The error function F to be minimized can be written as:

F � m

∑
i $ 1

ε2
i (11)

With minimization of the error function F, the vector x which represents the percentage fraction of the
reference spectra in the actual pixel can be calculated from eq. 5. The methods have been implemented to
calculate the area fractions x j while minimizing the error and respecting the two boundary conditions as
given in eq. 7 and eq. 8.

It is recommended to test for linear dependencies beforehand the matrix of reference spectra A using
Spectral Angle Mapping (SAM). In this case the selected spectra should be exchanged from the matrix to
improve the spectral separability. This is obtained by calculating the angle ϕ between column vector a j and
a j ' 1 in the matrix, i.e. between individual reference spectra ([16]):

ϕ � cos  1 � aT
j a j ' 1(( (( a j

(( ((
2 ) (( (( a j ' 1

(( ((
2

� (12)

The length of the vectors represents the signal power, i.e. the reflectivity of the observed object surface.
If the spectra are too close, i.e. the angle ϕ is too small, a spectral separation cannot be performed. In this
case the vectors are linearly dependent. Less noise and a higher number of bands minimizes the problem.

A mathematical problem arises from the inversion of matrix A (eq. 6 and eq. 9). Due to limits in the
sensor signal and other noise only ill conditioned matrices are expected; classical matrix inversion methods
such as Gauss elimination or LR decomposition will fail here. The Singular value decomposition (SVD)
proposed by some authors is also inappropriate as it does not fulfill the second boundary condition (eq. 8).

While enforcing the first (sum of areas be 100%) and the second (all area percentages within the positive
range, compare eq. 5) boundary conditions the implemented algorithm iteratively minimizes the error ε
(constraint least square method, [15]). Mathematically the solution of the equation is projected from the
undesired negative solution space to the boundary of the desired positive solution space ([16], [4]:8).
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Figure 6: Example for error function F, as calculated for a pixel in spectral unmixing of two bands. The
figures depicts the case of a numerically correct solution for fraction x in the negative range. However, this
minimum solution is outside the boundary conditions. The physically desired solution x * lays within the
range of 0% to 100% (triangle on error surface) and is found by projecting into the positive range while
keeping x * as close as possible to error minimum at x.

To solve the set of equations the gradient of the error function F (eq. 11) is considered. In a multi-
dimensional feature space the function F is a hyper-parabola. A three-dimensional case for two spectral
bands is shown in fig. 6. The error surface for this example is calculated as:

F ��+,+ � Ax & b �-+.+ 22 � � Ax & b � T � Ax & b � (13)

The numerically optimal solution x would be the minimum of the error function but it violates the
boundary conditions. In the proposed algorithm, a vector x * is initialized to a seed value. The set of seed
values initially define an equivalent area fraction for each endmember and are put into eq. 9. Using the
approach of deepest decent the calculated error can be minimized. To do so, the values of the vector x *
are lowered by the small value µ in the direction of decreasing slope of the error function. The gradient at
position k on the error surface F is calculated as (Harteneck 1998, pers. comm.):

∂F
∂x

� 2AT � Ax * � k �/& b � (14)

The new vector x * (k+1) is calculated for an increment µ as:

x * � k 
 1 ��� x * � k �0& µ ) 2AT � Ax � k �/& b � (15)

In the next iteration the new vector x * will be inserted again into eq. 9, which determines a new error
value. This will lead to a corrected vector x * . We finish the loop when we leave the positive solution space
or when we reach the minimum of the error function. The iteration is performed until no further significant
change appears in the error minimization. In fig. 6, the search for the optimal solution can be seen as moving
towards of the minimum. To spectrally unmix an image scene, this method must be applied to all pixels.
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Figure 7: XGOBI multi-session with interprocess communication enabled. The user can select endmembers
for spectral unmixing in the extremities of the data clouds (here PCA and Tasseled Cap transform) and
analyse the spectra in the parallel plot window

The signature analysis is usually based on a spectral library containing a large set of laboratory spectra
or done with a geometrical search for “pure” spectra in the image scene. A geometrical search can be done
by various methods, such as using Principal Component Analysis (PCA). Endmembers (“pure” spectra) are
located in the extremities of the PCA-transformed multidimensional pixel cloud. They can be extracted
interactively with XGOBI software ([17]). This software supports interprocess communication (IPC) which
enables the user to run several program sessions in parallel while the sessions maintain communication. The
user can interactively query transformed and untransformed data in either session for the identification of
endmembers, pixel map coordinates are indicated in all XGOBI windows (see fig. 7). From these coordinates
pure pixels can be easily extracted and used as endmembers.

From the created endmember file (either from a spectral library or from geometrical search within the im-
age scene) the spectral unmixing is performed. The result is a set of endmember abundance maps describing
pixelwise the area percentage of each endmember. The algorithm is implemented in i.spectral.unmix.

4 Image fusion with Brovey transform

In remote sensing systems parts of the spectrum are observed in different portions to minimize the impact of
noise. While multispectral sensors provide high spectral resolution at lower spatial resolution, panchromatic
sensors collect data at high spatial resolution and lower spectral resolution. Numerous algorithms have been
proposed to combine these data with best characteristics of both sensor types. One of these algorithms, the
Brovey transform, has been selected for script based implementation in GRASS.

The Brovey transform is a color transform which normalizes three input bands and multiplies the result
with a higher resolution band (panchromatic) ([12; 11]):

DN f used � DNb1

DNb1 
 DNb2 
 DNb3 1 DNpan (16)
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Figure 8: Left: LANDSAT-7 RGB composite at 28.5m; right: LANDSAT-7 RGB/PAN Brovey fusion at
14.25m

The Brovey algorithm holds an intermediate position between band arithmetic and component substi-
tution methods. A new script i.fusion.brovey has been integrated to GRASS 5.7 to support PAN
sharpening of multispectral satellite such as that from LANDSAT-7, Quickbird and SPOT. The algorithm
performs image fusion of the high resolution panchromatic channel with the multispectral channels at lower
resolution. The resulting pseudo-RGB channels are saved at the high resolution of the panchromatic channel
and have a near-natural color table. An example of LANDSAT-7 fusion is shown in fig. 8.

5 High performance image classification on openMosix cluster

A high performance solution for image classification with GRASS at meso-scale but with high spatial reso-
lution was developed. A script-based approach to run the standard, unmodified GRASS on an GNU/Linux
based openMosix cluster (20 PCs, 40 CPUs) has been implemented to classify multispectral color orthopho-
tos with SMAP algorithm (Sequential maximum a posteriori estimation, [1], [13]:440).

openMosix (www.openmosix.org, published under GPL) is a Linux kernel extension for single-
system image clustering. Once openMosix is installed and the cluster nodes are connected by a local net-
work, the nodes in the cluster communicate to optimally distribute the workload. Processes originating from
any node can migrate to any other node if the current node is too busy compared to others. openMosix con-
tinuously attempts to optimize the resource allocation. New nodes can be added while the cluster is running
and the cluster will automatically begin to use the new resources. Due to the distributed computing concept
of openMosix, the cluster behaves much like a symmetric multi-processor (SMP).

In order to run GRASS in parallel without code modifications, a multiple sequential approach was used.
Within the job launch script the GRASS environment variables are defined. It is important to run each
job in its own mapset to avoid one job influencing the settings of another job. The definition section is
followed by the GRASS analysis (in our case the SMAP classification). To finish, the launch script removes
the temporary files and copies the resulting classification map to the PERMANENT mapset. It uses UNIX
commands as the original g.copy command may fail due to race conditions (here: concurrent writing of
files) with other jobs copying results to the PERMANENT mapset at the same time.

The approach was tested in a large study area, the Autonomous Province of Trento (Italy), which is of
approximately 6200 km2 area. This area is covered by 280 RGB orthophotos at a resolution of one meter
per pixel. In tests, the required time to analyze these orthophotos at the given resolution was reduced from
estimated 110 days on a single CPU to 5 days on the ITC-irst openMosix cluster.
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